Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert N. Young is active.

Publication


Featured researches published by Robert N. Young.


Nature Chemical Biology | 2015

The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.


Journal of Biological Chemistry | 2011

Inhibition of Autophagosome Formation by the Benzoporphyrin Derivative Verteporfin

Elizabeth Donohue; Andrew Tovey; A. Wayne Vogl; Steve Arns; Ethan Sternberg; Robert N. Young; Michel Roberge

Autophagy enables cells to degrade and recycle cytoplasmic materials both as a housekeeping mechanism and in response to extracellular stress such as nutrient deprivation. Recent studies indicate that autophagy also functions as a protective mechanism in response to several cancer therapy agents, making it a prospective therapeutic target. Few pharmacological inhibitors suitable for testing the therapeutic potential of autophagy inhibition in vivo are known. An automated microscopy assay was used to screen >3,500 drugs and pharmacological agents and identified one drug, verteporfin, as an inhibitor of autophagosome accumulation. Verteporfin is a benzoporphyrin derivative used in photodynamic therapy, but it inhibits autophagy without light activation. Verteporfin did not inhibit LC3/Atg8 processing or membrane recruitment in response to autophagic stimuli, but it inhibited drug- and starvation-induced autophagic degradation and the sequestration of cytoplasmic materials into autophagosomes. Transient exposure to verteporfin in starvation conditions reduced cell viability whereas cells in nutrient-rich medium were unaffected by drug treatment. Analysis of structural analogs indicated that the activity of verteporfin requires the presence of a substituted cyclohexadiene at ring A of the porphyrin core but that it can tolerate a number of large substituents at rings C and D. The existence of an autophagy inhibitor among FDA-approved drugs should facilitate the investigation of the therapeutic potential of autophagy inhibition in vivo.


Antimicrobial Agents and Chemotherapy | 2011

Identification of Pyruvate Kinase in Methicillin-Resistant Staphylococcus aureus as a Novel Antimicrobial Drug Target

Roya Zoraghi; Raymond H. See; Peter Axerio-Cilies; Nag S. Kumar; Huansheng Gong; Michael Hsing; Sukhbir Kaur; Richard D. Swayze; Liam J. Worrall; Emily Amandoron; Tian Lian; Linda Jackson; Jihong Jiang; Lisa Thorson; Christophe Labrière; Leonard J. Foster; Robert C. Brunham; William R. McMaster; B. Brett Finlay; Natalie C. J. Strynadka; Artem Cherkasov; Robert N. Young; Neil E. Reiner

ABSTRACT Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 μM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.


Bioorganic & Medicinal Chemistry | 2012

Design and synthesis of novel bone-targeting dual-action pro-drugs for the treatment and reversal of osteoporosis

Steve Arns; Romelo Gibe; M. Monzur Morshed; Robert N. Young

There is an important medical need for effective therapies to redress the general bone loss associated with advanced osteoporosis. Prostaglandin E(2) and related EP4 receptor agonists have been shown to stimulate bone regrowth but their use has been limited by systemic side effects. Herein is described the design and synthesis of novel dual-action bone-targeting conjugate pro-drugs where two classes of active agents, a bone growth stimulating prostaglandin E(2) EP4 receptor subtype agonist (5 or 6) and a bone resorption inhibitor bisphosphonate, alendronic acid (1), are coupled using metabolically labile carbamate or 4-hydroxyphenylacetic acid based linkers. Radiolabelled conjugates 9, 11a/b and 25 were synthesized and evaluated in vivo in rats for uptake of the conjugate into bone and subsequent release of the EP4 agonists over time. While conjugate 11a/b was taken up (9.0% of initial dose) but not released over two weeks, conjugates 9 and 25 were absorbed at 9.4% and 5.9% uptake of the initial dose and slowly released with half-lives of approximately 2 weeks and 5 days respectively. These conjugates were well tolerated and offer potential for sustained release and dual synergistic activity through their selective bone targeting and local release of the complimentary active components.


Chemistry & Biology | 2014

Identification of a Potent Antiandrogen that Targets the BF3 Site of the Androgen Receptor and Inhibits Enzalutamide-Resistant Prostate Cancer

Ravi Shashi Nayana Munuganti; Mohamed D. Hassona; Eric Leblanc; Kate Frewin; Kriti Singh; Dennis Ma; Fuqiang Ban; Michael Hsing; Hans Adomat; Nada Lallous; Christophe Andre; Jon Paul Selvam Jonadass; Amina Zoubeidi; Robert N. Young; Emma Tomlinson Guns; Paul S. Rennie; Artem Cherkasov

There has been a resurgence of interest in the development of androgen receptor (AR) inhibitors with alternative modes of action to overcome the development of resistance to current therapies. We demonstrated previously that one promising strategy for combatting mutation-driven drug resistance is to target the Binding Function 3 (BF3) pocket of the receptor. Here we report the development of a potent BF3 inhibitor, 3-(2,3-dihydro-1H-indol-2-yl)-1H-indole, which demonstrates excellent antiandrogen potency and anti-PSA activity and abrogates the androgen-induced proliferation of androgen-sensitive (LNCaP) and enzalutamide-resistant (MR49F) PCa cell lines. Moreover, this compound effectively reduces the expression of AR-dependent genes in PCa cells and effectively inhibits tumor growth in vivo in both LNCaP and MR49F xenograft models. These findings provide evidence that targeting the AR BF3 pocket represents a viable therapeutic approach to treat patients with advanced and/or resistant prostate cancer.


Bioorganic & Medicinal Chemistry | 2009

Design and synthesis of an all-in-one 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group for photo-affinity labeling

Nag S. Kumar; Robert N. Young

A novel radioisotope-free photo-affinity probe containing the 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group was designed and synthesized. This very compact functionality is envisaged to allow photochemically-induced coupling of a compound to its target followed by click reaction coupling with an azido-biotin reagent in order to facilitate purification of the labeled target. In a proof-of-concept study we have shown that 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional group could be photolyzed to efficiently furnish the methanol adduct 23 and that the generated highly unstable carbene does not react with the neighboring acetylene moiety. A subsequent click reaction with the azido-biotin derivative 25 proceeded smoothly to give triazole 26. This chemical probe should thus be of unique value for facilitating identification of the molecular structure of the target of a bioactive compound.


Bioorganic & Medicinal Chemistry | 2015

Development of fluorescent peptide substrates and assays for the key autophagy-initiating cysteine protease enzyme, ATG4B.

Lubomir Vezenkov; Nicolette S. Honson; Nag Sharwan Kumar; Damien Bosc; Suzana Kovacic; Thanh G. Nguyen; Tom A. Pfeifer; Robert N. Young

An efficient assay for monitoring the activity of the key autophagy-initiating enzyme ATG4B based on a small peptide substrate has been developed. A number of putative small fluorogenic peptide substrates were prepared and evaluated and optimized compounds showed reasonable rates of cleavage but required high enzyme concentrations which limited their value. A modified peptide substrate incorporating a less sterically demanding self-immolative element was designed and synthesized and was shown to have enhanced properties useful for evaluating inhibitors of ATG4B. Substrate cleavage was readily monitored and was linear for up to 4h but enzyme concentrations of about ten-fold higher were required compared to assays using protein substrate LC3 or analogs thereof (such as FRET-LC3). Several known inhibitors of ATG4B were evaluated using the small peptide substrate and gave IC50 values 3-7 fold higher than previously obtained values using the FRET-LC3 substrate.


Journal of Bone and Mineral Research | 2015

Novel EP4 Receptor Agonist‐Bisphosphonate Conjugate Drug (C1) Promotes Bone Formation and Improves Vertebral Mechanical Properties in the Ovariectomized Rat Model of Postmenopausal Bone Loss

Careesa C Liu; Sally Hu; Gang Chen; John Georgiou; Steve Arns; Nag S. Kumar; Robert N. Young; Marc D. Grynpas

Current treatments for postmenopausal osteoporosis aim to either promote bone formation or inhibit bone resorption. The C1 conjugate drug represents a new treatment approach by chemically linking the antiresorptive compound alendronate (ALN) with the anabolic agent prostanoid EP4 receptor agonist (EP4a) through a linker molecule (LK) to form a conjugate compound. This enables the bone‐targeting ability of ALN to deliver EP4a to bone sites and mitigate the systemic side effects of EP4a, while also facilitating dual antiresorptive and anabolic effects. In vivo hydrolysis is required to release the EP4a and ALN components for pharmacological activity. Our study investigated the in vivo efficacy of this drug in treating established bone loss using an ovariectomized (OVX) rat model of postmenopausal osteopenia. In a curative experiment, 3‐month‐old female Sprague‐Dawley rats were OVX, allowed to lose bone for 7 weeks, then treated for 6 weeks. Treatment groups consisted of C1 conjugate at low and high doses, vehicle‐treated OVX and sham, prostaglandin E2 (PGE2), and mixture of unconjugated ALN‐LK and EP4a to assess the effect of conjugation. Results showed that weekly administration of C1 conjugate dose‐dependently increased bone volume in trabecular bone, which partially or completely reversed OVX‐induced bone loss in the lumbar vertebra and improved vertebral mechanical strength. The conjugate also dose‐dependently stimulated endocortical woven bone formation and intracortical resorption in cortical bone, with high‐dose treatment increasing the mechanical strength but compromising the material properties. Conjugation between the EP4a and ALN‐LK components was crucial to the drugs anabolic efficacy. To our knowledge, the C1 conjugate represents the first time that a combined therapy using an anabolic agent and the antiresorptive compound ALN has shown significant anabolic effects which reversed established osteopenia.


Autophagy | 2015

Precision autophagy: Will the next wave of selective autophagy markers and specific autophagy inhibitors feed clinical pipelines?

Chandra Lebovitz; Lindsay DeVorkin; Damien Bosc; Katharina Rothe; Jagbir Singh; Marcel B. Bally; Xiaoyan Jiang; Robert N. Young; Julian J. Lum; Sharon M. Gorski

Research presented at the Vancouver Autophagy Symposium (VAS) 2014 suggests that autophagys influence on health and disease depends on tight regulation and precision targeting of substrates. Discussions recognized a pressing need for robust biomarkers that accurately assess the clinical utility of modulating autophagy in disease contexts. Biomarker discovery could flow from investigations of context-dependent triggers, sensors, and adaptors that tailor the autophagy machinery to achieve target specificity. In his keynote address, Dr. Vojo Deretic (University of New Mexico) described the discovery of a cargo receptor family that utilizes peptide motif-based cargo recognition, a mechanism that may be more precise than generic substrate tagging. The keynote by Dr. Alec Kimmelman (Harvard Medical School) emphasized that unbiased screens for novel selective autophagy factors may accelerate the development of autophagy-based therapies. Using a quantitative proteomics screen for de novo identification of autophagosome substrates in pancreatic cancer, Kimmelmans group discovered a new type of selective autophagy that regulates bioavailable iron. Additional presentations revealed novel autophagy regulators and receptors in metabolic diseases, proteinopathies, and cancer, and outlined the development of specific autophagy inhibitors and treatment regimens that combine autophagy modulation with anticancer therapies. VAS 2014 stimulated interdisciplinary discussions focused on the development of biomarkers, drugs, and preclinical models to facilitate clinical translation of key autophagy discoveries.


ACS Chemical Biology | 2012

Cheminformatics-driven discovery of selective, nanomolar inhibitors for staphylococcal pyruvate kinase.

Peter Axerio-Cilies; Raymond H. See; Roya Zoraghi; Liam Worral; Tian Lian; Nikolay Stoynov; Jihong Jiang; Sukhbir Kaur; Linda Jackson; Huansheng Gong; Rick Swayze; Emily Amandoron; Nag S. Kumar; Michael Hsing; Natalie C. J. Strynadka; William R. McMaster; B. Brett Finlay; Leonard J. Foster; Robert N. Young; Neil E. Reiner; Artem Cherkasov

We have recently mapped the protein interaction network of methicillin-resistant Staphylococcus aureus (MRSA), which revealed its scale-free organization with characteristic presence of highly connected hub proteins that are critical for bacterial survival. Here we report the discovery of inhibitors that are highly potent against one such hub target, staphylococcal pyruvate kinase (PK). Importantly, the developed compounds demonstrate complete selectivity for the bacterial enzyme compared to all human orthologues. The lead 91nM inhibitor IS-130 has been identified through ligand-based cheminformatic exploration of a chemical space around micromolar hits initially generated by experimental screening. The following crystallographic study resulted in identification of a tetrameric MRSA PK structure where IS-130 is bound to the interface between the proteins subunits. This newly described binding pocket is not present in otherwise highly similar human orthologues and can be effectively utilized for selective inhibition of bacterial PK. The following synthetic modifications of IS-130, guided by structure-based molecular modeling, resulted in the development of MRSA PK inhibitors with much improved antimicrobial properties. Considering a notable lack of recent reports on novel antibacterial targets and cognate antibacterial compounds, this study provides a valuable perspective on the development of a new generation of antimicrobials. Equally noteworthy, the results of the current work highlight the importance of rigorous cheminformatics-based exploration of the results of high-throughput experiments.

Collaboration


Dive into the Robert N. Young's collaboration.

Top Co-Authors

Avatar

Nag S. Kumar

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

Gang Chen

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

Neil E. Reiner

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Artem Cherkasov

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

B. Brett Finlay

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Huansheng Gong

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Roya Zoraghi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Damien Bosc

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

Raymond H. See

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steve Arns

Simon Fraser University

View shared research outputs
Researchain Logo
Decentralizing Knowledge