Robert Nelson Atkinson
Research Triangle Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Nelson Atkinson.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Michael F. Jarvis; Prisca Honore; Char Chang Shieh; Mark L. Chapman; Shailen K. Joshi; Xu Feng Zhang; Michael E. Kort; William L. Carroll; Brian Edward Marron; Robert Nelson Atkinson; James P. Thomas; Dong Liu; Michael J. Krambis; Yi Liu; Steve McGaraughty; Katharine L. Chu; Rosemarie Roeloffs; Chengmin Zhong; Joseph P. Mikusa; Gricelda Hernandez; Donna M. Gauvin; Carrie L. Wade; Chang Zhu; Madhavi Pai; Marc Scanio; Lei Shi; Irene Drizin; Robert J. Gregg; Mark A. Matulenko; Ahmed A. Hakeem
Activation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Nav1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain. We report here the discovery of A-803467, a sodium channel blocker that potently blocks tetrodotoxin-resistant currents (IC50 = 140 nM) and the generation of spontaneous and electrically evoked action potentials in vitro in rat dorsal root ganglion neurons. In recombinant cell lines, A-803467 potently blocked human Nav1.8 (IC50 = 8 nM) and was >100-fold selective vs. human Nav1.2, Nav1.3, Nav1.5, and Nav1.7 (IC50 values ≥1 μM). A-803467 (20 mg/kg, i.v.) blocked mechanically evoked firing of wide dynamic range neurons in the rat spinal dorsal horn. A-803467 also dose-dependently reduced mechanical allodynia in a variety of rat pain models including: spinal nerve ligation (ED50 = 47 mg/kg, i.p.), sciatic nerve injury (ED50 = 85 mg/kg, i.p.), capsaicin-induced secondary mechanical allodynia (ED50 ≈ 100 mg/kg, i.p.), and thermal hyperalgesia after intraplantar complete Freunds adjuvant injection (ED50 = 41 mg/kg, i.p.). A-803467 was inactive against formalin-induced nociception and acute thermal and postoperative pain. These data demonstrate that acute and selective pharmacological blockade of Nav1.8 sodium channels in vivo produces significant antinociception in animal models of neuropathic and inflammatory pain.
Journal of Medicinal Chemistry | 2008
Michael E. Kort; Irene Drizin; Robert J. Gregg; Marc Scanio; Lei Shi; Michael F. Gross; Robert Nelson Atkinson; Matthew S. Johnson; Gregory J. Pacofsky; James B. Thomas; William A. Carroll; Michael J. Krambis; Dong Liu; Char-Chang Shieh; Xu-Feng Zhang; Gricelda Hernandez; Joseph P. Mikusa; Chengmin Zhong; Shailen K. Joshi; Prisca Honore; Rosemarie Roeloffs; Kennan C. Marsh; Bernard P. Murray; Jinrong Liu; Stephen Werness; Connie R. Faltynek; Douglas S. Krafte; Michael F. Jarvis; Mark L. Chapman; Brian Edward Marron
Nav1.8 (also known as PN3) is a tetrodotoxin-resistant (TTx-r) voltage-gated sodium channel (VGSC) that is highly expressed on small diameter sensory neurons and has been implicated in the pathophysiology of inflammatory and neuropathic pain. Recent studies using an Nav1.8 antisense oligonucleotide in an animal model of chronic pain indicated that selective blockade of Nav1.8 was analgesic and could provide effective analgesia with a reduction in the adverse events associated with nonselective VGSC blocking therapeutic agents. Herein, we describe the preparation and characterization of a series of 5-substituted 2-furfuramides, which are potent, voltage-dependent blockers (IC50 < 10 nM) of the human Nav1.8 channel. Selected derivatives, such as 7 and 27, also blocked TTx-r sodium currents in rat dorsal root ganglia (DRG) neurons with comparable potency and displayed >100-fold selectivity versus human sodium (Nav1.2, Nav1.5, Nav1.7) and human ether-a-go-go (hERG) channels. Following systemic administration, compounds 7 and 27 dose-dependently reduced neuropathic and inflammatory pain in experimental rodent models.
Tetrahedron Letters | 2001
Lawrence E. Brieaddy; S. Wayne Mascarella; Hernan Navarro; Robert Nelson Atkinson; M.I. Damaj; Billy R. Martin; F. Ivy Carroll
Abstract The synthesis of conformationally locked analogs of epibatidine are described in which the key step is an intramolecular reductive palladium-catalyzed Heck-type coupling.
Bioorganic & Medicinal Chemistry Letters | 2000
James B. Thomas; Robert Nelson Atkinson; Richard B. Rothman; Jason P. Burgess; S. Wayne Mascarella; Christina M. Dersch; Heng Xu; F. Ivy Carroll
The tropane derived compounds, 4-[(8-alkyl-8-azabicyclo[3.2.1]octyl-3-yl)-3-arylanilino]-N,N-d iethylbenzamides (5a-d), were synthesized and found to have high affinity and selectivity for the delta receptor. Compounds 5a-d are structurally similar to the full agonist (-)-RTI-5989-54 (3); yet, efficacy studies for compounds in this series (5a-d) reveal greatly diminished agonist activity as well as antagonism not found in piperidine-based compounds like 3.
Bioorganic & Medicinal Chemistry Letters | 1999
James C. Thomas; Robert Nelson Atkinson; Xavier Herault; Rb Rothman; S Mascarella; Cm Dersch; Heng Xu; Rb Horel; F Carroll
The optical isomers of 4-[(N-allyl-3-methyl-4-piperidinyl)phenylamino]-N,N-diethylbenzamide+ ++ (3) have been prepared and tested in both binding and functional assays. The data show that (-)-3 is responsible for the delta opioid activity demonstrated by the racemic material. This compound displays a binding affinity of 5.5 nM for the delta opioid receptor as well as a 470-fold delta versus mu selectivity. Importantly, (-)-3 is a full agonist at the delta receptor in comparison with SNC-80 (2). Taken together, the data suggest that (-)-3 behaves more like the prototypical delta agonists, BW373U86 or SNC-80, and less like the peptidomimetic compound SL-3111 (5).
Archive | 2002
Robert Nelson Atkinson; Michael F. Gross
Journal of Medicinal Chemistry | 2001
Jim A. Thomas; Robert Nelson Atkinson; Richard B. Rothman; Scott E. Fix; S Mascarella; Noelle Vinson; Heng Xu; Cm Dersch; Yi-Feng Lu; Buddy E. Cantrell; Dennis M. Zimmerman; F Carroll
Journal of Medicinal Chemistry | 2003
Jim A. Thomas; Robert Nelson Atkinson; Noelle Vinson; Jennifer L. Catanzaro; Carin Perretta; Scott E. Fix; S Mascarella; Richard B. Rothman; Heng Xu; Cm Dersch; Buddy E. Cantrell; Dennis M. Zimmerman; F Carroll
Archive | 2004
Robert Nelson Atkinson; Irene Drizin; Robert J. Gregg; Michael F. Gross; Michael E. Kort; Lei Shi
Journal of Medicinal Chemistry | 2007
F. Ivy Carroll; T. Philip Robinson; Lawrence E. Brieaddy; Robert Nelson Atkinson; S. Wayne Mascarella; M. Imad Damaj; Billy R. Martin; Hernan Navarro