Robert Porteous
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Porteous.
Neuron | 2006
Tim M. Wintermantel; Rebecca E. Campbell; Robert Porteous; Dagmar Bock; Hermann Josef Gröne; Martin G. Todman; Kenneth S. Korach; Erich Greiner; Cristian A. Pérez; Günther Schütz; Allan E. Herbison
The mechanisms through which estrogen regulates gonadotropin-releasing hormone (GnRH) neurons to control mammalian ovulation are unknown. We found that estrogen positive feedback to generate the preovulatory gonadotropin surge was normal in estrogen receptor beta knockout (ERbeta) mutant mice, but absent in ERalpha mutant mice. An ERalpha-selective compound was sufficient to generate positive feedback in wild-type mice. As GnRH neurons do not express ERalpha, estrogen positive feedback upon GnRH neurons must be indirect in nature. To establish the cell type responsible, we generated a neuron-specific ERalpha mutant mouse line. These mice failed to exhibit estrogen positive feedback, demonstrating that neurons expressing ERalpha are critical. We then used a GnRH neuron-specific Pseudorabies virus (PRV) tracing approach to show that the ERalpha-expressing neurons innervating GnRH neurons are located within rostral periventricular regions of the hypothalamus. These studies demonstrate that ovulation is driven by estrogen actions upon ERalpha-expressing neuronal afferents to GnRH neurons.
Endocrinology | 2009
Mohammed Z. Rizwan; Robert Porteous; Allan E. Herbison; Greg M. Anderson
An RFamide peptide named gonadotropin-inhibitory hormone, which directly inhibits gonadotropin synthesis and secretion from the anterior pituitary gland, has recently been discovered in the avian hypothalamus. It is not known whether the mammalian orthologs of gonadotropin-inhibitory hormone and RFamide-related peptide (RFRP)-1 and -3 act in the same way. We used a newly generated antibody against the rat RFRP precursor combined with retrograde tract tracing to characterize the cell body distribution and fiber projections of RFRP-1 and -3 neurons in rats. RFRP-1/3-immunoreactive cell bodies were found exclusively within the dorsomedial hypothalamus. Immunoreactive fibers were observed in the septal-preoptic area, hypothalamus, midbrain, brainstem, and hippocampus but not in the external zone of the median eminence. Intraperitoneal injection of the retrograde tracer Fluoro-Gold in rats resulted in the labeling of the majority of GnRH neurons but essentially no RFRP-1/3 neurons. In contrast, intracerebral injections of Fluoro-Gold into the rostral preoptic area and CA2/CA3 hippocampus resulted in the labeling of 75 +/- 5% and 21 +/- 8% of RFRP-1/3 cell bodies, respectively. To assess actions at the pituitary in vivo, RFRP-3 was administered as an iv bolus to ovariectomized rats and plasma LH concentration measured at 0, 2.5, 5, 10, and 30 min. RFRP-3 had no effects on basal secretion, but GnRH-stimulated LH release was reduced by about 25% at 5 min. Together these observations suggest that RFRP-3 is not a hypophysiotropic neuroendocrine hormone in rats.
The Journal of Neuroscience | 2011
Xinhuai Liu; Robert Porteous; Xavier d’Anglemont de Tassigny; William H. Colledge; Robert P. Millar; Sandra L. Petersen; Allan E. Herbison
The anteroventral periventricular nucleus (AVPV) is thought to play a key role in regulating the excitability of gonadotropin-releasing hormone (GnRH) neurons that control fertility. Using an angled, parahorizontal brain slice preparation we have undertaken a series of electrophysiological experiments to examine how the AVPV controls GnRH neurons in adult male and female mice. More than half (59%) of GnRH neurons located in the rostral preoptic area were found to receive monosynaptic inputs from the AVPV in a sex-dependent manner. AVPV stimulation frequencies <1 Hz generated short-latency action potentials in GnRH neurons with GABA and glutamate mediating >90% of the evoked fast synaptic currents. The AVPV GABA input was dominant and found to excite or inhibit GnRH neurons in a cell-dependent manner. Increasing the AVPV stimulation frequency to 5–10 Hz resulted in the appearance of additional poststimulus inhibitory as well as delayed excitatory responses in GnRH neurons that were independent of ionotropic amino acid receptors. The inhibition observed immediately following the end of the stimulation period was mediated partly by GABAB receptors, while the delayed activation was mediated by the neuropeptide kisspeptin. The latter response was essentially absent in Gpr54 knock-out mice and abolished by a Gpr54 antagonist. Together, these studies show that AVPV neurons provide direct amino acid and neuropeptidergic inputs to GnRH neurons. Low-frequency activation generates predominant GABA/glutamate release with higher frequency activation recruiting release of kisspeptin. This frequency-dependent release of amino acid and neuropeptide neurotransmitters greatly expands the range of AVPV control of GnRH neuron excitability.
Endocrinology | 2010
Kiho Lee; Robert Porteous; Rebecca E. Campbell; Bernhard Lüscher; Allan E. Herbison
The amino acid gamma-aminobutyric acid (GABA) is thought to play a key role in shaping the activity of the GnRH neurons throughout embryonic and postnatal life. However, the physiological roles of direct GABA inputs to GnRH neurons remain unknown. Using a Cre-LoxP strategy, we generated a targeted mouse line, in which all (98 +/- 1%) GnRH neurons had the gamma2-subunit of the GABA(A) receptor deleted. Electrophysiological recordings of GABA(A)-mediated postsynaptic currents from green fluorescent protein-tagged GnRH neurons with the gamma2-subunit knocked out (GnRH gamma2 KO) showed that the amplitude and frequency of GABA(A) postsynaptic currents were reduced by 70% (P < 0.01) and 77% (P < 0.05), respectively, and that the response to exogenous GABA was reduced by 90% (P < 0.01). Evaluation of male and female GnRH gamma2 KO mice revealed completely normal fecundity, estrous cycles, and puberty onset. Further investigation with gonadectomy and different steroid replacement regimens showed normal basal levels of LH in both sexes, and a normal estradiol-evoked positive feedback mechanism in females. However, the increment in LH after gonadectomy in GnRH gamma2 KO female mice was double that of controls (P < 0.05) and also more potently suppressed by 17-beta-estradiol (P < 0.05). A similar but nonsignificant trend was observed in GnRH gamma2 KO male mice. Together, these findings show that 70-90% reductions in the normal levels of GABA(A) receptor activity at the GnRH neuron appear to impact upon the estrogen negative feedback mechanism but are, nevertheless, compatible with normal fertility in mice.
The Journal of Comparative Neurology | 2011
Robert Porteous; Sandra L. Petersen; Shel Hwa Yeo; Janardhan Prasad Bhattarai; Philippe Ciofi; Xavier d’Anglemont de Tassigny; William H. Colledge; Alain Caraty; Allan E. Herbison
It is now well established that the kisspeptin neurons of the hypothalamus play a key role in regulating the activity of gonadotropin‐releasing hormone (GnRH) neurons. The population of kisspeptin neurons residing in the rostral periventricular region of the third ventricle (RP3V), encompassing the anteroventral periventricular (AVPV) and periventricular preoptic nuclei (PVpo), are implicated in the generation of the preovulatory GnRH surge mechanism and puberty onset in female rodents. The present study examined whether these kisspeptin neurons may express other neuropeptides in the adult female mouse. Initially, the distribution of galanin, neurotensin, met‐enkephalin (mENK), and cholecystokinin (CCK)‐immunoreactive cells was determined within the RP3V of colchicine‐treated mice. Subsequent experiments, using a new kisspeptin‐10 antibody raised in sheep, examined the relationship of these neuropeptides to kisspeptin neurons. No evidence was found for expression of neurotensin or CCK by RP3V kisspeptin neurons, but subpopulations of kisspeptin neurons were observed to express galanin and mENK. Dual‐labeled RP3V kisspeptin/galanin cells represented 7% of all kisspeptin and 21% of all galanin neurons whereas dual‐labeled kisspeptin/mENK cells represented 28–38% of kisspeptin neurons and 58–68% of the mENK population, depending on location within the AVPV or PVpo. Kisspeptin neurons in the arcuate nucleus were also found to express galanin but not mENK. These observations indicate that, like the kisspeptin population of the arcuate nucleus, kisspeptin neurons in the RP3V also co‐express a range of neuropeptides. This pattern of co‐expression should greatly increase the dynamic range with which kisspeptin neurons can modulate the activity of their afferent neurons. J. Comp. Neurol. 519:3456–3469, 2011.
Endocrinology | 2011
Rebecca E. Campbell; Eric Ducret; Robert Porteous; Xinhuai Liu; Michel K. Herde; Kerstin Wellerhaus; Stephan Sonntag; Klaus Willecke; Allan E. Herbison
The role of gap junctions in the neural control of fertility remains poorly understood. Using acute brain slices from adult GnRH-green fluorescent protein transgenic mice, individual GnRH neurons were filled with a mixture of fluorescent dextran and neurobiotin. No dye transfer was found between any GnRH neurons, although approximately 30% of GnRH neurons exchanged neurobiotin with closely apposed cells. Dual electrophysiological recordings from pairs of GnRH neurons revealed an absence of electrical coupling. Using adult connexin 36 (Cx36)-cyan fluorescent protein transgenic mice, Cx36 was identified in cells within several hypothalamic brain regions, including 64% of preoptic area kisspeptin neurons but not in GnRH neurons. To assess the potential role of Cx36 in non-GnRH neurons within the GnRH neuronal network (i.e. neurons providing afferent inputs to GnRH neurons), a calmodulin kinase IIα-Cre (CKC)-LoxP strategy was used to generate mice with a neuron-specific deletion of Cx36 beginning in the first postnatal week. Mutant female mice exhibited normal puberty onset but disordered estrous cyclicity, although their fecundity was normal as was their estrogen-negative and -positive feedback mechanisms. The effects of adult deletion of Cx36 from neurons were assessed using a tamoxifen-dependent inducible CKC-Cx36 transgenic strategy. Mutant mice exhibited the same reproductive phenotype as the CKC-Cx36 animals. Together these observations demonstrate that there is no gap junctional coupling between GnRH neurons. However, it is apparent that other neurons within the GnRH neuronal network, potentially the preoptic kisspeptin neurons, are dependent on Cx36 gap junctions and that this is critical for normal estrous cyclicity.
The Journal of Neuroscience | 2015
Rachel Y. Cheong; Katja Czieselsky; Robert Porteous; Allan E. Herbison
Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1lox/lox line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1lox/lox mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1lox/lox mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1lox/lox mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. SIGNIFICANCE STATEMENT Circulating estradiol acts upon the brain to regulate the functioning of many neuronal networks, including those controlling reproduction. Acting in classic homeostatic negative or positive feedback modes, estradiol variably suppresses or enhances the activity of the gonadotropin-releasing hormone (GnRH) neurons throughout the ovarian cycle. We show here that estrogen receptor α (ESR1) within glutamate (VGLUT2) neurons is essential for both the negative and positive estradiol feedback loops. In contrast, ESR1 in GABA neurons is only required for estradiol positive feedback. These studies emphasize the importance of estradiol-modulated amino-acidergic neurons within the GnRH neuronal network and highlight an unexpected prominent role for ESR1-expressing glutamate neurons in fertility control.
Endocrinology | 2014
Rachel Y. Cheong; Robert Porteous; Pierre Chambon; István M. Ábrahám; Allan E. Herbison
The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron-selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice.
Developmental Dynamics | 2009
Christine L. Jasoni; Robert Porteous; Allan E. Herbison
The gonadotropin‐releasing hormone (GnRH) neurons exhibit substantial functional, anatomical, and molecular heterogeneity, which has hampered their thorough examination. This study was undertaken in an effort to understand whether the anatomical distribution of GnRH neurons is related to their developmental history, because such an association may help explain differences within the population. Using bromodeoxyuridine pulse labeling of timed pregnant female mice we labeled dividing cells, including GnRH neuron progenitors in the olfactory placode, throughout the window of GnRH neuron differentiation. Our results indicate that cells that become postmitotic early tend to populate the rostral aspects of the adult GnRH neuron continuum, whereas later‐generated cells tend to settle more caudally; an inside‐out pattern reminiscent of neocortex. These observations suggest that the timing of differentiation influences the ability of postmitotic GnRH neurons to navigate to their adult location, and hence may be important in determining the ultimate wiring of the adult network. Developmental Dynamics 238:524–531, 2009.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Jenny Clarkson; Su Young Han; Richard Piet; Timothy McLennan; Grace M. Kane; Jamie Ng; Robert Porteous; Joon S. Kim; William H. Colledge; Karl J. Iremonger; Allan E. Herbison
Significance Neural networks located in the hypothalamus are responsible for generating ultradian patterns of hormone secretion that control a wide variety of functions. How these neural networks generate pulsatile hormone secretion remains unknown. We report here that a population of hypothalamic kisspeptin neurons represents the gonadotropin-releasing hormone (GnRH) pulse generator. These cells have the remarkable ability to generate synchronized GnRH secretion every 9 min to drive pulsatile gonadotropin hormone secretion in the blood. These observations indicate the arcuate kisspeptin neurons as the origin of reproductive hormone pulsatility in mice and offer the prospect of better understanding and manipulating fertility in the clinic. The pulsatile release of luteinizing hormone (LH) is critical for mammalian fertility. However, despite several decades of investigation, the identity of the neuronal network generating pulsatile reproductive hormone secretion remains unproven. We use here a variety of optogenetic approaches in freely behaving mice to evaluate the role of the arcuate nucleus kisspeptin (ARNKISS) neurons in LH pulse generation. Using GCaMP6 fiber photometry, we find that the ARNKISS neuron population exhibits brief (∼1 min) synchronized episodes of calcium activity occurring as frequently as every 9 min in gonadectomized mice. These ARNKISS population events were found to be near-perfectly correlated with pulsatile LH secretion. The selective optogenetic activation of ARNKISS neurons for 1 min generated pulses of LH in freely behaving mice, whereas inhibition with archaerhodopsin for 30 min suppressed LH pulsatility. Experiments aimed at resetting the activity of the ARNKISS neuron population with halorhodopsin were found to reset ongoing LH pulsatility. These observations indicate the ARNKISS neurons as the long-elusive hypothalamic pulse generator driving fertility.