Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Rallo is active.

Publication


Featured researches published by Robert Rallo.


ACS Nano | 2012

Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

Haiyuan Zhang; Zhaoxia Ji; Tian Xia; Huan Meng; Cecile Low-Kam; Rong Liu; Suman Pokhrel; Sijie Lin; Xiang Wang; Yu-Pei Liao; Meiying Wang; Linjiang Li; Robert Rallo; Robert Damoiseaux; Donatello Telesca; Lutz Mädler; Yoram Cohen; Jeffrey I. Zink; Andre E. Nel

We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.


ACS Nano | 2011

Use of a High Throughput Screening Approach Coupled With In Vivo Zebrafish Embryo Screening to Develop Hazard Ranking for Engineered Nanomaterials

Saji George; Tian Xia; Robert Rallo; Yan Zhao; Zhaoxia Ji; Sijie Lin; Xiang Wang; Haiyuan Zhang; David Schoenfeld; Robert Damoiseaux; Rong Liu; Shuo Lin; Kenneth A. Bradley; Yoram Cohen; Andre E. Nel

Because of concerns about the safety of a growing number of engineered nanomaterials (ENM), it is necessary to develop high-throughput screening and in silico data transformation tools that can speed up in vitro hazard ranking. Here, we report the use of a multiparametric, automated screening assay that incorporates sublethal and lethal cellular injury responses to perform high-throughput analysis of a batch of commercial metal/metal oxide nanoparticles (NP) with the inclusion of a quantum dot (QD1). The responses chosen for tracking cellular injury through automated epifluorescence microscopy included ROS production, intracellular calcium flux, mitochondrial depolarization, and plasma membrane permeability. The z-score transformed high volume data set was used to construct heat maps for in vitro hazard ranking as well as showing the similarity patterns of NPs and response parameters through the use of self-organizing maps (SOM). Among the materials analyzed, QD1 and nano-ZnO showed the most prominent lethality, while Pt, Ag, SiO2, Al2O3, and Au triggered sublethal effects but without cytotoxicity. In order to compare the in vitro with the in vivo response outcomes in zebrafish embryos, NPs were used to assess their impact on mortality rate, hatching rate, cardiac rate, and morphological defects. While QDs, ZnO, and Ag induced morphological abnormalities or interfered in embryo hatching, Pt and Ag exerted inhibitory effects on cardiac rate. Ag toxicity in zebrafish differed from the in vitro results, which is congruent with this materials designation as extremely dangerous in the environment. Interestingly, while toxicity in the initially selected QD formulation was due to a solvent (toluene), supplementary testing of additional QDs selections yielded in vitro hazard profiling that reflect the release of chalcogenides. In conclusion, the use of a high-throughput screening, in silico data handling and zebrafish testing may constitute a paradigm for rapid and integrated ENM toxicological screening.


Nanoscale | 2011

No time to lose—high throughput screening to assess nanomaterial safety

Robert Damoiseaux; Saji George; Minghua Li; Suman Pokhrel; Zhaoxia Ji; Tian Xia; Elizabeth Suarez; Robert Rallo; Lutz Mädler; Yoram Cohen; Eric M.V. Hoek; Andre E. Nel

Nanomaterials hold great promise for medical, technological and economical benefits. Knowledge concerning the toxicological properties of these novel materials is typically lacking. At the same time, it is becoming evident that some nanomaterials could have a toxic potential in humans and the environment. Animal based systems lack the needed capacity to cope with the abundance of novel nanomaterials being produced, and thus we have to employ in vitro methods with high throughput to manage the rush logistically and use high content readouts wherever needed in order to gain more depth of information. Towards this end, high throughput screening (HTS) and high content screening (HCS) approaches can be used to speed up the safety analysis on a scale that commensurate with the rate of expansion of new materials and new properties. The insights gained from HTS/HCS should aid in our understanding of the tenets of nanomaterial hazard at biological level as well as assist the development of safe-by-design approaches. This review aims to provide a comprehensive introduction to the HTS/HCS methodology employed for safety assessment of engineered nanomaterials (ENMs), including data analysis and prediction of potentially hazardous material properties. Given the current pace of nanomaterial development, HTS/HCS is a potentially effective means of keeping up with the rapid progress in this field--we have literally no time to lose.


Small | 2011

Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles

Rong Liu; Robert Rallo; Saji George; Zhaoxia Ji; Sumitra Nair; Andre E. Nel; Yoram Cohen

A classification-based cytotoxicity nanostructure-activity relationship (nanoSAR) is presented based on a set of nine metal oxide nanoparticles to which transformed bronchial epithelial cells (BEAS-2B) were exposed over a range of concentrations (0.375-200 mg L(-1) ) and exposure times up to 24 h. The nanoSAR is developed using cytotoxicity data from a high-throughput screening assay that was processed to identify and label toxic (in terms of the propidium iodide uptake of BEAS-2B cells) versus nontoxic events relative to an unexposed control cell population. Starting with a set of fourteen intuitive but fundamental physicochemical nanoSAR input parameters, a number of models were identified which had a classification accuracy above 95%. The best-performing model had a 100% classification accuracy in both internal and external validations. This model is based on three descriptors: atomization energy of the metal oxide, period of the nanoparticle metal, and nanoparticle primary size, in addition to nanoparticle volume fraction (in solution). Notwithstanding the success of the present modeling approach with a relatively small nanoparticle library, it is important to recognize that a significantly larger data set would be needed in order to expand the applicability domain and increase the confidence and reliability of data-driven nanoSARs.


Computers & Chemical Engineering | 2002

Neural virtual sensor for the inferential prediction of product quality from process variables

Robert Rallo; Joan Ferré-Giné; Alex Arenas; Francesc Giralt

A predictive Fuzzy ARTMAP neural system and two hybrid networks, each combining a dynamic unsupervised classifier with a different kind of supervised mechanism, were applied to develop virtual sensor systems capable of inferring the properties of manufactured products from real process variables. A new method to construct dynamically the unsupervised layer was developed. A sensitivity analysis was carried out by means of self-organizing maps to select the most relevant process features and to reduce the number of input variables into the model. The prediction of the melt index (MI) or quality of six different LDPE grades produced in a tubular reactor was taken as a case study. The MI inferred from the most relevant process variables measured at the beginning of the process cycle deviated 5% from on-line MI values for single grade neural sensors and 7% for composite neural models valid for all grades simultaneously.


international conference on software engineering | 2004

PlanetSim: a new overlay network simulation framework

Pedro García; Carles Pairot; Rubén Mondéjar; Jordi Pujol; Helio Tejedor; Robert Rallo

Current research in peer to peer systems is lacking appropriate environments for simulation and experimentation of large scale overlay services. This has led to a plethora of custom made simulators that waste development resources and hinder fair comparisons between different approaches. In this paper we present a new simulation / experimentation framework for large scale overlay services with three main contributions: i) provide a unifying approach to simulation/ experimentation that eases the transition from simulation to network testbeds, ii) it clearly distinguish between the design of overlay algorithms (key based routing), and the applications and services built on top of them, iii) offer a layered and modular architecture with clear hotspots, and pervasive use of design patterns. We have used PlanetSim to implement and evaluate overlay networks such as Chord and Symphony, and overlay services such as Scribe application level multicast, and keyword query systems over distributed hash tables.


Environmental Science & Technology | 2011

Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles

Robert Rallo; Rong Liu; Sumitra Nair; Saji George; Robert Damoiseaux; Francesc Giralt; Andre E. Nel; Kenneth A. Bradley; Yoram Cohen

The response of a murine macrophage cell line exposed to a library of seven metal and metal oxide nanoparticles was evaluated via High Throughput Screening (HTS) assay employing luciferase-reporters for ten independent toxicity-related signaling pathways. Similarities of toxicity response among the nanoparticles were identified via Self-Organizing Map (SOM) analysis. This analysis, applied to the HTS data, quantified the significance of the signaling pathway responses (SPRs) of the cell population exposed to nanomaterials relative to a population of untreated cells, using the Strictly Standardized Mean Difference (SSMD). Given the high dimensionality of the data and relatively small data set, the validity of the SOM clusters was established via a consensus clustering technique. Analysis of the SPR signatures revealed two cluster groups corresponding to (i) sublethal pro-inflammatory responses to Al2O3, Au, Ag, SiO2 nanoparticles possibly related to ROS generation, and (ii) lethal genotoxic responses due to exposure to ZnO and Pt nanoparticles at a concentration range of 25-100 μg/mL at 12 h exposure. In addition to identifying and visualizing clusters and quantifying similarity measures, the SOM approach can aid in developing predictive quantitative-structure relations; however, this would require significantly larger data sets generated from combinatorial libraries of engineered nanoparticles.


Accounts of Chemical Research | 2013

In silico analysis of nanomaterials hazard and risk.

Yoram Cohen; Robert Rallo; Rong Liu; Haoyang Haven Liu

Because a variety of human-related activities, engineer-ed nanoparticles (ENMs) may be released to various environmental media and may cross environmental boundaries, and thus will be found in most media. Therefore, the potential environmental impacts of ENMs must be assessed from a multimedia perspective and with an integrated risk management approach that considers rapid developments and increasing use of new nanomaterials. Accordingly, this Account presents a rational process for the integration of in silico ENM toxicity and fate and transport analyses for environmental impact assessment. This approach requires knowledge of ENM toxicity and environmental exposure concentrations. Considering the large number of current different types of ENMs and that those numbers are likely to increase, there is an urgent need to accelerate the evaluation of their toxicity and the assessment of their potential distribution in the environment. Developments in high throughput screening (HTS) are now enabling the rapid generation of large data sets for ENM toxicity assessment. However, these analyses require the establishment of reliable toxicity metrics, especially when HTS includes data from multiple assays, cell lines, or organisms. Establishing toxicity metrics with HTS data requires advanced data processing techniques in order to clearly identify significant biological effects associated with exposure to ENMs. HTS data can form the basis for developing and validating in silico toxicity models (e.g., quantitative structure-activity relationships) and for generating data-driven hypotheses to aid in establishing and/or validating possible toxicity mechanisms. To correlate the toxicity of ENMs with their physicochemical properties, researchers will need to develop quantitative structure-activity relationships for nanomaterials (i.e., nano-SARs). However, as nano-SARs are applied in regulatory applications, researchers must consider their applicability and the acceptance level of false positive relative to false negative predictions and the reliability of toxicity data. To establish the environmental impact of ENMs identified as toxic, researchers will need to estimate the potential level of environmental exposure concentration of ENMs in the various media such as air, water, soil, and vegetation. When environmental monitoring data are not available, models of ENMs fate and transport (at various levels of complexity) serve as alternative approaches for estimating exposure concentrations. Risk management decisions regarding the manufacturing, use, and environmental regulations of ENMs would clearly benefit from both the assessment of potential ENMs exposure concentrations and suitable toxicity metrics. The decision process should consider the totality of available information: quantitative and qualitative data and the analysis of nanomaterials toxicity, and fate and transport behavior in the environment. Effective decision-making to address the potential impacts of nanomaterials will require considerations of the relevant environmental, ecological, technological, economic, and sociopolitical factors affecting the complete lifecycle of nanomaterials, while accounting for data and modeling uncertainties. Accordingly, researchers will need to establish standardized data management and analysis tools through nanoinformatics as a basis for the development of rational decision tools.


Physics of Fluids | 2000

The simulation and interpretation of free turbulence with a cognitive neural system

Francesc Giralt; and Alex Arenas; Joan Ferré-Giné; Robert Rallo; Gregory A. Kopp

An artificial neural network, based on fuzzy ARTMAP, that is capable of learning the basic nonlinear dynamics of a turbulent velocity field is presented. The neural system is capable of generating a detailed multipoint time record with the same structural characteristics and basic statistics as those of the original instantaneous velocity field used for training. The good performance of the proposed architecture is demonstrated by the generation of synthetic two-dimensional velocity data at eight different positions along the homogeneous (spanwise) direction in the far region (x/D=420) of a turbulent wake flow generated behind a cylinder at Re=1 200. The analysis of the synthetic velocity field, carried out with spectral techniques, POD and pattern recognition, reveals that the proposed neural system is capable of capturing the highly nonlinear dynamics of free turbulence and of reproducing the sequence of individual classes of relevant events present in turbulent wake flows. The trained neural system als...


PLOS ONE | 2012

Automated Phenotype Recognition for Zebrafish Embryo Based In Vivo High Throughput Toxicity Screening of Engineered Nano-Materials

Rong Liu; Sijie Lin; Robert Rallo; Yan Zhao; Robert Damoiseaux; Tian Xia; Shuo Lin; Andre E. Nel; Yoram Cohen

A phenotype recognition model was developed for high throughput screening (HTS) of engineered Nano-Materials (eNMs) toxicity using zebrafish embryo developmental response classified, from automatically captured images and without manual manipulation of zebrafish positioning, by three basic phenotypes (i.e., hatched, unhatched, and dead). The recognition model was built with a set of vectorial descriptors providing image color and texture information. The best performing model was attained with three image descriptors (color histogram, representative color, and color layout) identified as most suitable from an initial pool of six descriptors. This model had an average recognition accuracy of 97.40±0.95% in a 10-fold cross-validation and 93.75% in a stress test of low quality zebrafish images. The present work has shown that a phenotyping model can be developed with accurate recognition ability suitable for zebrafish-based HTS assays. Although the present methodology was successfully demonstrated for only three basic zebrafish embryonic phenotypes, it can be readily adapted to incorporate more subtle phenotypes.

Collaboration


Dive into the Robert Rallo's collaboration.

Top Co-Authors

Avatar

Yoram Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre E. Nel

University of California

View shared research outputs
Top Co-Authors

Avatar

Tian Xia

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge