Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. Coffin is active.

Publication


Featured researches published by Robert S. Coffin.


Gene Therapy | 2003

ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties

Liu Bl; Robinson M; Han Zq; Branston Rh; English C; Reay P; McGrath Y; Thomas Sk; Thornton M; Bullock P; Love Ca; Robert S. Coffin

Herpes simplex virus type-1 (HSV1) in which the neurovirulence factor ICP34.5 is inactivated has been shown to direct tumour-specific cell lysis in several tumour models. Such viruses have also been shown to be safe in Phase I clinical trials by intra-tumoral injection in glioma and melanoma patients.1,2,3 Previous work has used serially passaged laboratory isolates of HSV1 which we hypothesized may be attenuated in their lytic capability in human tumour cells as compared to more recent clinical isolates. To produce ICP34.5 deleted HSV with enhanced oncolytic potential, we tested two clinical isolates. Both showed improved cell killing in all human tumour cell lines tested compared to a laboratory strain (strain 17+). ICP34.5 was then deleted from one of the clinical isolate strains (strain JS1). Enhanced tumour cell killing with ICP34.5 deleted HSV has also been reported by the deletion of ICP47 by the up-regulation of US11 which occurs following this mutation.4,5 Thus to further improve oncolytic properties, ICP47 was removed from JS1/ICP34.5−. As ICP47 also functions to block antigen processing in HSV infected cells, this mutation was also anticipated to improve the immune stimulating properties of the virus. Finally, to provide viruses with maximum oncolytic and immune stimulating properties, the gene for human or mouse GM-CSF was inserted into the JS1/34.5−/47- vector backbone. GM-CSF is a potent immune stimulator promoting the differentiation of progenitor cells into dendritic cells and has shown promise in clinical trials when delivered by a number of means. Combination of GM-CSF with oncolytic therapy may be particularly effective as the necrotic cell death accompanying virus replication should serve to effectively release tumour antigens to then induce a GM-CSF-enhanced immune response. This would, in effect, provide an in situ, patient-specific, anti-tumour vaccine. The viruses constructed were tested in vitro in human tumour cell lines and in vivo in mice demonstrating significant anti-tumour effects. These were greatly improved compared to viruses not containing each of the modifications described. In vivo, both injected and non-injected tumours showed significant shrinkage or clearance and mice were protected against re-challenge with tumour cells. The data presented indicate that JS1/ICP34.5−/ICP47-/GM-CSF acts as a powerful oncolytic agent which may be appropriate for the treatment of a number of solid tumour types in man.


Journal of Neurocytology | 2002

The Nogo receptor, its ligands and axonal regeneration in the spinal cord; A review

David Hunt; Robert S. Coffin; Patrick N. Anderson

At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.


Journal of Virology | 2003

Deletion of the Virion Host Shutoff Protein (vhs) from Herpes Simplex Virus (HSV) Relieves the Viral Block to Dendritic Cell Activation: Potential of vhs− HSV Vectors for Dendritic Cell-Mediated Immunotherapy

Laila Samady; Emanuela Costigliola; Luci P. MacCormac; Yvonne McGrath; Steve Cleverley; Caroline E. Lilley; Jill Smith; David S. Latchman; Benny Chain; Robert S. Coffin

ABSTRACT Herpes simplex virus (HSV) infects dendritic cells (DC) efficiently but with minimal replication. HSV, therefore, appears to have evolved the ability to enter DC even though they are nonpermissive for virus growth. This provides a potential utility for HSV in delivering genes to DC for vaccination purposes and also suggests that the life cycle of HSV usually includes the infection of DC. However, DC infected with HSV usually lose the ability to become activated following infection (M. Salio, M. Cella, M. Suter, and A. Lanzavecchia, Eur. J. Immunol. 29:3245-3253, 1999; M. Kruse, O. Rosorius, F. Kratzer, G. Stelz, C. Kuhnt, G. Schuler, J. Hauber, and A. Steinkasserer, J. Virol. 74:7127-7136, 2000). We report that for DC to retain the ability to become activated following HSV infection, the virion host shutoff protein (vhs) must be deleted. vhs usually functions to destabilize mRNA in favor of the production of HSV proteins in permissive cells. We have found that it also plays a key role in the inactivation of DC and is therefore likely to be important for immune evasion by the virus. Here, vhs would be anticipated to prevent DC activation in the early stages of infection of an individual with HSV, reducing the induction of cellular immune responses and thus preventing virus clearance during repeated cycles of virus latency and reactivation. Based on this information, replication-incompetent HSV vectors with vhs deleted which allow activation of DC and the induction of specific T-cell responses to delivered antigens have been constructed. These responses are greater than if DC are loaded with antigen by incubation with recombinant protein.


Journal of Virology | 2000

Development and Optimization of Herpes Simplex Virus Vectors for Multiple Long-Term Gene Delivery to the Peripheral Nervous System

J. A. Palmer; R. H. Branston; Caroline E. Lilley; M. J. Robinson; Filitsa Groutsi; Jill Smith; David S. Latchman; Robert S. Coffin

ABSTRACT Herpes simplex virus (HSV) has often been suggested as a suitable vector for gene delivery to the peripheral nervous system as it naturally infects sensory nerve terminals before retrograde transport to the cell body in the spinal ganglia where latency is established. HSV vectors might therefore be particularly appropriate for the study and treatment of chronic pain following vector administration by relatively noninvasive peripheral routes. However parameters allowing safe and efficient gene delivery to spinal ganglia following peripheral vector inoculation, or the long-term expression of delivered genes, have not been comprehensively studied. We have identified combinations of deletions from the HSV genome which allow highly efficient gene delivery to spinal dorsal root ganglia (DRGs) following either footpad or sciatic nerve injection. These vectors have ICP34.5 deleted and have inactivating mutations in vmw65. We also report that peripheral replication is probably necessary for the efficient establishment of latency in vivo, as fully replication-incompetent HSV vectors allow efficient gene expression in DRGs only after peripheral inoculation at a high virus dose. Very low transduction efficiencies are otherwise achieved. In parallel, promoters have been developed that allow the long-term expression of individual or pairs of genes in DRGs by using elements from the latently active region of the virus to confer a long-term activity onto a number of promoters which otherwise function only in the short term. This work further defines elements and mechanisms within the latently active region that are necessary for long-term gene expression and for the first time allows multiple inserted genes to be expressed from HSV vectors during latency.


The Journal of Infectious Diseases | 2003

Herpes Simplex Virus Infection of Dendritic Cells: Balance among Activation, Inhibition, and Immunity

Gabriele Pollara; Katharina Speidel; Laila Samady; Mansi Rajpopat; Yvonne McGrath; Jonathan A. Ledermann; Robert S. Coffin; David R. Katz; Benjamin M. Chain

Several lines of evidence suggest that dendritic cells (DCs), the most potent antigen-presenting cells known, play a role in the immunological control of herpes simplex virus (HSV) infections. HSV infection of DCs induced submaximal maturation, but DCs failed to mature further in response to lipopolysaccharide (LPS). LPS induced interleukin (IL)-12 secretion, and the induction of primary and secondary T cell responses were impaired by infection. Ultimately, DC infection resulted in delayed, asynchronous apoptotic cell death. However, infected DCs induced HSV recall responses in some individuals. Furthermore, soluble factors secreted by DCs after infection induced DC maturation and primed for IL-12 secretion after LPS stimulation. These data support a pathogenetic model of HSV infection, in which initial delay in the generation of immune responses to HSV at peripheral sites is mediated by disruption of DC function but is overcome by bystander DC maturation and cross-presentation of HSV antigens.


Journal of Virology | 2001

Multiple Immediate-Early Gene-Deficient Herpes Simplex Virus Vectors Allowing Efficient Gene Delivery to Neurons in Culture and Widespread Gene Delivery to the Central Nervous System In Vivo

Caroline E. Lilley; Filitsa Groutsi; Ziqun Han; James A. Palmer; Patrick N. Anderson; David S. Latchman; Robert S. Coffin

ABSTRACT Herpes simplex virus (HSV) has several potential advantages as a vector for delivering genes to the nervous system. The virus naturally infects and remains latent in neurons and has evolved the ability of highly efficient retrograde transport from the site of infection at the periphery to the site of latency in the spinal ganglia. HSV is a large virus, potentially allowing the insertion of multiple or very large transgenes. Furthermore, HSV does not integrate into the host chromosome, removing any potential for insertional activation or inactivation of cellular genes. However, the development of HSV vectors for the central nervous system that exploit these properties has been problematical. This has mainly been due to either vector toxicity or an inability to maintain transgene expression. Here we report the development of highly disabled versions of HSV-1 deleted for ICP27, ICP4, and ICP34.5/open reading frame P and with an inactivating mutation in VP16. These viruses express only minimal levels of any of the immediate-early genes in noncomplementing cells. Transgene expression is maintained for extended periods with promoter systems containing elements from the HSV latency-associated transcript promoter (J. A. Palmer et al., J. Virol. 74:5604–5618, 2000). Unlike less-disabled viruses, these vectors allow highly effective gene delivery both to neurons in culture and to the central nervous system in vivo. Gene delivery in vivo is further enhanced by the retrograde transport capabilities of HSV. Here the vector is efficiently transported from the site of inoculation to connected sites within the nervous system. This is demonstrated by gene delivery to both the striatum and substantia nigra following striatal inoculation; to the spinal cord, spinal ganglia, and brainstem following injection into the spinal cord; and to retinal ganglion neurons following injection into the superior colliculus and thalamus.


Molecular and Cellular Neuroscience | 2002

Nogo receptor mRNA expression in intact and regenerating CNS neurons.

David Hunt; M.R.J. Mason; G. Campbell; Robert S. Coffin; Patrick N. Anderson

The expression of mRNA for Nogo-66 receptor (NgR) in unoperated adult rats and mice, and rats with nerve grafts placed in the thalamus and cerebellum to stimulate axonal regeneration, was investigated by in situ hybridization. NgR was strongly expressed in neurons of the neocortex, hippocampal formation, and amygdaloid nuclei and dorsal thalamus and moderately expressed in the red nucleus and vestibular nuclei. NgR mRNA was expressed in cerebellar deep nuclei and more strongly by granule cells than by Purkinje cells. Large regions of the forebrain, including the striatum, thalamic reticular nucleus, hypothalamus, and basal forebrain showed little or no NgR expression. NgR was weakly expressed in spinal neurons and some primary sensory neurons. Nerve implantation into the brain did not affect NgR expression. Some regeneration-competent neurons expressed NgR but others did not. Thus NgR expression was not correlated with the ability of neurons to regenerate axons into nerve grafts although Nogo-66 was strongly upregulated by some cells in the distal stumps of injured sciatic nerves. Nogo-66 transcripts were strongly expressed by many classes of CNS neurons and less strongly in white matter.


Journal of Neuroscience Research | 2007

Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury

Kazuya Kitamura; Akio Iwanami; Masaya Nakamura; Junichi Yamane; Kota Watanabe; Yoshinori Suzuki; Daisuke Miyazawa; Shinsuke Shibata; Hiroshi Funakoshi; Shin-Ichi Miyatake; Robert S. Coffin; Toshikazu Nakamura; Yoshiaki Toyama; Hideyuki Okano

Many therapeutic interventions using neurotrophic factors or pharmacological agents have focused on secondary degeneration after spinal cord injury (SCI) to reduce damaged areas and promote axonal regeneration and functional recovery. Hepatocyte growth factor (HGF), which was identified as a potent mitogen for mature hepatocytes and a mediator of inflammatory responses to tissue injury, has recently been highlighted as a potent neurotrophic and angiogenic factor in the central nervous system (CNS). In the present study, we revealed that the extent of endogenous HGF up‐regulation was less than that of c‐Met, an HGF receptor, during the acute phase of SCI and administered exogenous HGF into injured spinal cord using a replication‐incompetent herpes simplex virous‐1 (HSV‐1) vector to determine whether HGF exerts beneficial effects and promotes functional recovery after SCI. This treatment resulted in the significant promotion of neuron and oligodendrocyte survival, angiogenesis, axonal regrowth, and functional recovery after SCI. These results suggest that HGF gene delivery to the injured spinal cord exerts multiple beneficial effects and enhances endogenous repair after SCI. This is the first study to demonstrate the efficacy of HGF for SCI.


Molecular and Cellular Neuroscience | 2003

Nogo-A expression in the intact and injured nervous system

David Hunt; Robert S. Coffin; Rab K. Prinjha; G. Campbell; Patrick N. Anderson

The expression of Nogo-A mRNA and protein in the nervous system of adult rats and cultured neurons was studied by in situ hybridisation and immunohistochemistry. Nogo-A mRNA was expressed by many cells in unoperated animals, including spinal motor, DRG, and sympathetic neurons, retinal ganglion cells, and neocortical, hippocampal, and Purkinje neurons. Nogo-A protein was strongly expressed by presumptive oligodendrocytes, but not by NG2+glia and was abundant in motor, DRG, and sympathetic neurons, retinal ganglion cells, and many Purkinje cells, but was difficult to detect in dentate gyrus neurons and some neocortical neurons. Cultured fetal mouse neocortical neurons and adult rat DRG neurons strongly expressed Nogo-A in their perikarya, growth cones, and axonal varicosities. All axons in the intact sciatic nerve contained Nogo-A and many but not all regenerating axons were strongly Nogo-A immunopositive after sciatic nerve transection. Ectopic muscle fibres that developed among the regenerating axons were also Nogo-A immunopositive. Following injury to the spinal cord, Nogo-A mRNA was upregulated around the lesion and Nogo-A protein was strongly expressed in injured dorsal column fibres and their sprouts which entered the lesion site. Following optic nerve crush, Nogo-A accumulated in the proximal and distal stumps bordering the lesions.


Basic Research in Cardiology | 2001

In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors.

Matthew Wright; Lionel M. L. Wightman; Caroline E. Lilley; Mahesh de Alwis; Steven L. Hart; Andrew D. Miller; Robert S. Coffin; Adrian J. Thrasher; David S. Latchman; Michael Marber

Abstract The purpose was to determine the relative efficiency, toxicity and duration of expression following gene delivery by intramyocardial injection of naked DNA, naked DNA complexed to cationic liposomes, naked DNA complexed to cationic liposomes with integrin-targetting peptide, recombinant (E1−/E3−) adenovirus, recombinant adeno-associated virus and recombinant (ICP27−) herpes simplex virus. All vectors incorporated a LacZ reporter driven by a promoter containing the hCMV-IE promoter/enhancer. Efficiency was scored by counting positive cells in five standard microscopic sections harvested from the left ventricular apex. Rabbit hearts (n = 100) were examined from 2 to 56 days after injection.Uncomplexed and complexed naked DNA were very inefficient with less than one positive cell visible per heart. The viral vectors all resulted in robust gene expression with adenovirus being the most efficient by at least one order of magnitude before 21 days. However, despite disparate titres, the efficiency beyond 21 days of adenovirus and adeno-associated virus were comparable. In contrast to adeno-associated virus, both adenovirus and herpes-simplex virus were associated with a marked inflammatory response. Despite reporter gene activity appearing only after 21 days, adeno-associated virus shows comparative promise as a myocardial gene delivery vector.

Collaboration


Dive into the Robert S. Coffin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill Smith

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge