Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. Edinger is active.

Publication


Featured researches published by Robert S. Edinger.


The Journal of General Physiology | 2004

Acute ENaC Stimulation by cAMP in a Kidney Cell Line is Mediated by Exocytic Insertion from a Recycling Channel Pool

Michael B. Butterworth; Robert S. Edinger; John P. Johnson; Raymond A. Frizzell

Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na+ transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, MPKCCD14) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (ISC), membrane capacitance (CT), and conductance (GT) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 ± 6% (n = 31) increase in ISC and a 15.3 ± 1.5% (n = 15) increase in CT. Selective membrane permeabilization demonstrated that the CT increase was due to an increase in apical membrane capacitance. ISC and CT declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (∼1 h each cycle) resulted in response fatigue; ΔISC decreased ∼10% per stimulation–recovery cycle. When channel production was blocked by cycloheximide, ΔISC decreased ∼15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated ISC, and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the ISC responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation.


Cancer Research | 2012

TMEM16A, induces MAPK and contributes directly to tumorigenesis and cancer progression

Umamaheswar Duvvuri; Daniel J. Shiwarski; Dong Xiao; Carol A. Bertrand; Xin Huang; Robert S. Edinger; Jason R. Rock; Brian D. Harfe; Brian J. Henson; Karl Kunzelmann; Rainer Schreiber; Raja S. Seethala; Ann Marie Egloff; Xing Chen; Vivian Wai Yan Lui; Jennifer R. Grandis; Susanne M. Gollin

Frequent gene amplification of the receptor-activated calcium-dependent chloride channel TMEM16A (TAOS2 or ANO1) has been reported in several malignancies. However, its involvement in human tumorigenesis has not been previously studied. Here, we show a functional role for TMEM16A in tumor growth. We found TMEM16A overexpression in 80% of head and neck squamous cell carcinoma (SCCHN), which correlated with decreased overall survival in patients with SCCHN. TMEM16A overexpression significantly promoted anchorage-independent growth in vitro, and loss of TMEM16A resulted in inhibition of tumor growth both in vitro and in vivo. Mechanistically, TMEM16A-induced cancer cell proliferation and tumor growth were accompanied by an increase in extracellular signal-regulated kinase (ERK)1/2 activation and cyclin D1 induction. Pharmacologic inhibition of MEK/ERK and genetic inactivation of ERK1/2 (using siRNA and dominant-negative constructs) abrogated the growth effect of TMEM16A, indicating a role for mitogen-activated protein kinase (MAPK) activation in TMEM16A-mediated proliferation. In addition, a developmental small-molecule inhibitor of TMEM16A, T16A-inh01 (A01), abrogated tumor cell proliferation in vitro. Together, our findings provide a mechanistic analysis of the tumorigenic properties of TMEM16A, which represents a potentially novel therapeutic target. The development of small-molecule inhibitors against TMEM16A may be clinically relevant for treatment of human cancers, including SCCHN.


American Journal of Physiology-renal Physiology | 2009

Regulation of the epithelial sodium channel by membrane trafficking

Michael B. Butterworth; Robert S. Edinger; Raymond A. Frizzell; John P. Johnson

The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddles syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in states as diverse as salt-sensitive hypertension, nephrosis, and pulmonary edema. ENaC activity in epithelial cells is highly regulated both by open probability and number of channels. Open probability is regulated by a number of factors, including proteolytic processing, while ENaC number is regulated by cellular trafficking. This review discusses current understanding of apical membrane delivery, cell surface stability, endocytosis, retrieval, and recycling of ENaC and the molecular partners that have so far been shown to participate in these processes. We review known sites and mechanisms of hormonal regulation of trafficking by aldosterone, vasopressin, and insulin. While many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.


Journal of Biological Chemistry | 2007

The Deubiquitinating Enzyme UCH-L3 Regulates the Apical Membrane Recycling of the Epithelial Sodium Channel

Michael B. Butterworth; Robert S. Edinger; Huib Ovaa; Danny Burg; John P. Johnson; Raymond A. Frizzell

The epithelial sodium channel (ENaC) is ubiquitinated by the E3 ligase Nedd4-2 at the apical membranes of polarized cortical collecting duct (CCD) epithelial cells. This leads to ENaC endocytosis and possible degradation. Because ENaC is known to recycle at the apical membranes of CCD cells, deubiquitinating enzymes (DUBs) are likely involved in regulating ENaC surface density by facilitating ENaC recycling as opposed to degradation. Using a chemical probe approach to tag active DUBs, we identified ubiquitin C-terminal hydrolase (UCH) isoform L3 as the predominant DUB in endosomal compartments of CCD cells. Blocking UCH-L3 activity or reducing its expression by selective knockdown increased ENaC ubiquitination and resulted in its removal from the apical membranes of CCD cells. Functionally this caused a rapid reduction in transepithelial Na+ currents across the CCD epithelia. Surface biotinylation demonstrated the loss of ENaC from the apical surface when UCH-L3 was inhibited. Whole cell or apical surface immunoprecipitation demonstrated increased ENaC ubiquitination with UCH-L3 inhibition. This constitutes a novel function for UCH in epithelia and in the regulation of ion channels and demonstrates the dynamic regulation of apically located ENaC by recycling, which is facilitated by this DUB.


Journal of Biological Chemistry | 2006

Clathrin-mediated Endocytosis of the Epithelial Sodium Channel ROLE OF EPSIN

Huamin Wang; Linton M. Traub; Kelly M. Weixel; Mathew J. Hawryluk; Nirav Shah; Robert S. Edinger; Clint J. Perry; Lauren Kester; Michael B. Butterworth; Kathryn W. Peters; Thomas R. Kleyman; Raymond A. Frizzell; John P. Johnson

Here we present evidence that the epithelial sodium channel (ENaC), a heteromeric membrane protein whose surface expression is regulated by ubiquitination, is present in clathrin-coated vesicles in epithelial cells that natively express ENaC. The channel subunits are ubiquitinated and co-immunoprecipitate with both epsin and clathrin adaptor proteins, and epsin, as expected, co-immunoprecipitates with clathrin adaptor proteins. The functional significance of these interactions was evaluated in a Xenopus oocyte expression system where co-expression of epsin and ENaC resulted in a down-regulation of ENaC activity; conversely, co-expression of epsin sub-domains acted as dominant-negative effectors and stimulated ENaC activity. These results identify epsin as an accessory protein linking ENaC to the clathrin-based endocytic machinery thereby regulating the activity of this ion channel at the cell surface.


Journal of Biological Chemistry | 1999

Regulation of the amiloride-sensitive epithelial sodium channel by syntaxin 1A.

Juanjuan Qi; Kathryn W. Peters; Chongguang Liu; Jun-Min Wang; Robert S. Edinger; John P. Johnson; Simon C. Watkins; Raymond A. Frizzell

The first step in transepithelial sodium absorption lies at the apical membrane where the amiloride-sensitive, epithelial sodium channel, ENaC, facilitates sodium entry into the cell. Here we report that the vesicle traffic regulatory (SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)) protein, syntaxin 1A (S1A), inhibits ENaC mediated sodium entry. This inhibitory effect is selective for S1A and is not reproduced by syntaxin 3. The inhibition does not require the membrane anchoring domain of syntaxin 1A. It was reversed by the S1A-binding protein, Munc-18, but not by a Munc-18 mutant, which lacks syntaxin affinity. Immunostaining of epitope-tagged ENaC subunits showed that syntaxin 1A decreases ENaC current by reducing the number of ENaC channels in the plasma membrane; S1A does not interfere with ENaC protein expression. Immunoprecipitation of syntaxin 1A from the sodium-transporting epithelial cell line, A6, co-precipitates ENaC. These findings indicate that syntaxin 1A and other members of the SNARE machinery are involved in the control of plasma membrane ENaC content, and they suggest that SNARE proteins participate in the regulation of sodium absorption in relation to agonist mediated vesicle insertion-retrieval processes.


Journal of Biological Chemistry | 1998

Carboxylmethylation of the beta subunit of xENaC regulates channel activity.

Michael D. Rokaw; Jun-Min Wang; Robert S. Edinger; Ora A. Weisz; Daniel Hui; Pamela Middleton; Vadim Shlyonsky; Bakhrom K. Berdiev; Iskander I. Ismailov; Douglas C. Eaton; Dale J. Benos; John P. Johnson

The action of aldosterone to increase apical membrane permeability in responsive epithelia is thought to be due to activation of sodium channels. Aldosterone stimulates methylation of a 95-kDa protein in apical membrane of A6 cells, and we have previously shown that methylation of a 95-kDa protein in the immunopurified Na+ channel complex increases open probability of these channels in planar lipid bilayers. We report here that aldosterone stimulates carboxylmethylation of the β subunit of xENaC in A6 cells. In vitro translated β subunit, but not α or γ, serves as a substrate for carboxylmethylation. Carboxylmethylation of ENaC reconstituted in planar lipid bilayers leads to an increase in open probability only when β subunit is present. When the channel complex is immunoprecipitated from A6 cells and analyzed by Western blot with antibodies to the three subunits of xENaC, all three subunits are recognized as constituents of the complex. The results suggest that Na+ channel activity in A6 cells is regulated, in part, by carboxylmethylation of the β subunit of xENaC.


Journal of Biological Chemistry | 2009

Regulation of Epithelial Na+ Transport by Soluble Adenylyl Cyclase in Kidney Collecting Duct Cells

Kenneth R. Hallows; Huamin Wang; Robert S. Edinger; Michael B. Butterworth; Nicholas M. Oyster; Hui Li; Jochen Buck; Lonny R. Levin; John P. Johnson; Núria M. Pastor-Soler

Alkalosis impairs the natriuretic response to diuretics, but the underlying mechanisms are unclear. The soluble adenylyl cyclase (sAC) is a chemosensor that mediates bicarbonate-dependent elevation of cAMP in intracellular microdomains. We hypothesized that sAC may be an important regulator of Na+ transport in the kidney. Confocal images of rat kidney revealed specific immunolocalization of sAC in collecting duct cells, and immunoblots confirmed sAC expression in mouse cortical collecting duct (mpkCCDc14) cells. These cells exhibit aldosterone-stimulated transepithelial Na+ currents that depend on both the apical epithelial Na+ channel (ENaC) and basolateral Na+,K+-ATPase. RNA interference-mediated 60-70% knockdown of sAC expression comparably inhibited basal transepithelial short circuit currents (Isc) in mpkCCDc14 cells. Moreover, the sAC inhibitors KH7 and 2-hydroxyestradiol reduced Isc in these cells by 50-60% within 30 min. 8-Bromoadenosine-3′,5′-cyclic-monophosphate substantially rescued the KH7 inhibition of transepithelial Na+ current. Aldosterone doubled ENaC-dependent Isc over 4 h, an effect that was abolished in the presence of KH7. The sAC contribution to Isc was unaffected with apical membrane nystatin-mediated permeabilization, whereas the sAC-dependent Na+ current was fully inhibited by basolateral ouabain treatment, suggesting that the Na+,K+-ATPase, rather than ENaC, is the relevant transporter target of sAC. Indeed, neither overexpression of sAC nor treatment with KH7 modulated ENaC currents in Xenopus oocytes. ATPase and biotinylation assays in mpkCCDc14 cells demonstrated that sAC inhibition decreases catalytic activity rather than surface expression of the Na+,K+-ATPase. In summary, these results suggest that sAC regulates both basal and agonist-stimulated Na+ reabsorption in the kidney collecting duct, acting to enhance Na+,K+-ATPase activity.


Journal of Biological Chemistry | 2007

The Epithelial Sodium Channel (ENaC) Traffics to Apical Membrane in Lipid Rafts in Mouse Cortical Collecting Duct Cells

Warren G. Hill; Michael B. Butterworth; Huamin Wang; Robert S. Edinger; Jonathan H. LeBowitz; Kathryn W. Peters; Raymond A. Frizzell; John P. Johnson

We previously showed that ENaC is present in lipid rafts in A6 cells, a Xenopus kidney cell line. We now demonstrate that ENaC can be detected in lipid rafts in mouse cortical collecting duct (MPKCCD14) cells by detergent insolubility, buoyancy on density gradients using two distinct approaches, and colocalization with caveolin 1. Less than 30% of ENaC subunits were found in raft fractions. The channel subunits also colocalized on sucrose gradients with known vesicle targeting and fusion proteins syntaxin 1A, Vamp 2, and SNAP23. Hormonal stimulation of ENaC activity by either forskolin or aldosterone, short or long term, did not alter the lipid raft distribution of ENaC. Methyl-β-cyclodextrin added apically to MPKCCD14 cells resulted in a slow decline in amiloride-sensitive sodium transport with short circuit current reductions of 38.1 ± 9.6% after 60 min. The slow decline in ENaC activity in response to apical cyclodextrin was identical to the rate of decline seen when protein synthesis was inhibited by cycloheximide. Apical biotinylation of MPKCCD14 cells confirmed the loss of ENaC at the cell surface following cyclodextrin treatment. Acute stimulation of the recycling pool of ENaC was unaffected by apical cyclodextrin application. Expression of dominant negative caveolin isoforms (CAV1-eGFP and CAV3-DGV) which disrupt caveolae, reduced basal ENaC currents by 72.3 and 78.2%, respectively; but, as with cyclodextrin, the acute response to forskolin was unaffected. We conclude that ENaC is present in and regulated by lipid rafts. The data are consistent with a model in which rafts mediate the constitutive apical delivery of ENaC.


American Journal of Physiology-renal Physiology | 2012

Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC)

Michael B. Butterworth; Robert S. Edinger; Mark R. Silvis; Luciana I. Gallo; Xiubin Liang; Gerard Apodaca; Raymond A. Fizzell; John P. Johnson

Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy. Expression of a dominant negative (DN) form of Rab11a or Rab11b significantly reduced the basal and cAMP-stimulated ENaC-dependent sodium (Na(+)) transport. The greatest reduction in Na(+) transport was observed with the expression of DN-Rab11b. Furthermore, small interfering RNA-mediated knockdown of each Rab11 isoform demonstrated the requirement for Rab11b in ENaC surface expression. These data indicate that Rab11b, and to a lesser extent Rab11a, is involved in establishing the constitutive and cAMP-stimulated Na(+) transport in mpkCCD cells.

Collaboration


Dive into the Robert S. Edinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas C. Eaton

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ora A. Weisz

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge