Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. Fuller is active.

Publication


Featured researches published by Robert S. Fuller.


Eukaryotic Cell | 2005

Yapsins Are a Family of Aspartyl Proteases Required for Cell Wall Integrity in Saccharomyces cerevisiae

Damian J. Krysan; Elizabeth L. Ting; Claudia Abeijon; Lee Kroos; Robert S. Fuller

ABSTRACT The yeast cell wall is a crucial extracellular organelle that protects the cell from lysis during environmental stress and morphogenesis. Here, we demonstrate that the yapsin family of five glycosylphosphatidylinositol-linked aspartyl proteases is required for cell wall integrity in Saccharomyces cerevisiae. Yapsin null mutants show hypersensitivity to cell wall perturbation, and both the yps1Δ2Δ mutant and the quintuple yapsin mutant (5ypsΔ) undergo osmoremedial cell lysis at 37°C. The cell walls of both 5ypsΔ and yps1Δ2Δ mutants have decreased amounts of 1,3- and 1,6-β-glucan. Although there is decreased incorporation of both 1,3- and 1,6-β-glucan in the 5ypsΔ mutant in vivo, in vitro specific activity of both 1,3- and 1,6-β-glucan synthesis is similar to wild type, indicating that the yapsins affect processes downstream of glucan synthesis and that the yapsins may be involved in the incorporation or retention of cell wall glucan. Presumably as a response to the significant alterations in cell wall composition, the cell wall integrity mitogen-activated kinase signaling cascade (PKC1-MPK pathway) is basally active in 5ypsΔ. YPS1 expression is induced during cell wall stress and remodeling in a PKC1-MPK1-dependent manner, indicating that Yps1p is a direct, and important, output of the cell wall integrity response. The Candida albicans (SAP9) and Candida glabrata (CgYPS1) homologues of YPS1 complement the phenotypes of the yps1Δ mutant. Taken together, these data indicate that the yapsins play an important role in glucan homeostasis in S. cerevisiae and that yapsin homologues may play a similar role in the pathogenic yeasts C. albicans and C. glabrata.


Journal of Biological Chemistry | 1999

Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides.

Damian J. Krysan; Nathan C. Rockwell; Robert S. Fuller

Furin, an essential mammalian proprotein processing enzyme of the kexin/furin family of subtilisin-related eukaryotic processing proteases, is implicated in maturation of substrates involved in development, signaling, coagulation, and pathogenesis. We examined the energetics of furin specificity using a series of peptidyl methylcoumarinamide substrates. In contrast to previous reports, we found that furin can cleave such substrates with kinetics comparable to those observed with extended peptides and physiological substrates. With the best of these hexapeptidyl methylcoumarinamides, furin displayedk cat /K m values greater than 106 m −1 s −1. Furin exhibited striking substrate inhibition with hexapeptide but not tetrapeptide substrates, an observation of significance to the evaluation of peptide-based furin inhibitors. Quantitative comparison of furin and Kex2 recognition at P1, P2, and P4 demonstrates that whereas interactions at P1 make comparable contributions to catalysis by the two enzymes, furin exhibited a ∼10-fold lesser dependence on P2 recognition but a 10–100-fold greater dependence on P4 recognition. Furin has recently been shown to exhibit P6 recognition and we found that this interaction contributes ∼1.4 kcal/mol toward catalysis independent of the nature of the P4 residue. We have also shown that favorable residues at P2 and P6 will compensate for less than optimal residues at either P1 or P4. The quantitative analysis of furin and Kex2 specificity sharply distinguish the nature of substrate recognition by the processing and degradative members of subtilisin-related proteases.


Journal of Biological Chemistry | 1998

Involvement of Cell Surface Glycosyl-phosphatidylinositol-linked Aspartyl Proteases in α-Secretase-type Cleavage and Ectodomain Solubilization of Human Alzheimer β-Amyloid Precursor Protein in Yeast

Hiroto Komano; Mary Seeger; Sam Gandy; Gary T. Wang; Grant A. Krafft; Robert S. Fuller

Human β-amyloid precursor protein (APP) introduced into yeast undergoes α-secretase-type cleavage, suggesting that yeast have α-secretase-like protease(s). Here we report that two structurally and functionally related glycosyl-phosphatidylinositol-linked yeast aspartyl proteases, Mkc7p and Yap3p (collectively termed yapsin), are responsible for α-secretase-type cleavage of APP expressed in yeast, resulting in release of soluble APP into the extracellular space. Disruption ofMKC7 and YAP3 in a vacuolar protease-deficient strain abolished this APP cleavage/release, and APP cleavage/release could be restored by introduction of MKC7 orYAP3 on a single copy plasmid. Purified Mkc7p cleaved an internally quenched fluorogenic APP peptide substrate at the α-secretase cleavage site. Measurement of proteolytic activity either in yeast homogenates or on the yeast cell surface revealed that most Mkc7p and Yap3p activities were localized at the cell surface. These results establish a molecular basis for α-secretase-type cleavage in yeast and support the generally held concept that α-secretase cleavage of APP occurs at the cell surface.


Journal of Biological Chemistry | 2009

Inhibition of Furin/Proprotein Convertase-catalyzed Surface and Intracellular Processing by Small Molecules

Tomoko Komiyama; Julia M. Coppola; Martha J. Larsen; Marcian E. Van Dort; Brian D. Ross; Robert Day; Alnawaz Rehemtulla; Robert S. Fuller

Furin is a ubiquitously expressed proprotein convertase (PC) that plays a vital role in numerous disease processes including cancer metastasis, bacterial toxin activation (e.g. anthrax and Pseudomonas), and viral propagation (e.g. avian influenza and human immunodeficiency virus). To identify small molecule inhibitors of furin and related processing enzymes, we performed high-throughput screens of chemical diversity libraries utilizing both enzyme-based and cell-based assays. The screens identified partially overlapping sets of compounds that were further characterized for affinity, mechanism, and efficacy in additional cellular processing assays. Dicoumarols were identified as a class of compounds that inhibited furin non-competitively and reversibly with Ki values in the micromolar range. These compounds inhibited furin/furin-like activity both at the cell surface (protecting against anthrax toxin) and in the secretory pathway (blocking processing of the metastasis factor membrane-type 1 matrix metalloproteinase/MT1-MMP) at concentrations close to Ki values. Compounds tested exhibited distinct patterns of inhibition of other furin-family PCs (rat PACE4, human PC5/6 and human PC7), showing that dicoumarol derivatives might be developed as either generic or selective inhibitors of the PCs. The extensive clinical use, high bioavailability and relatively low toxicity of dicoumarols suggests that the dicoumarol structure will be a good starting point for development of drug-like inhibitors of furin and other PCs that can act both intracellularly and at the cell surface.


Journal of Cell Biology | 2001

The Tlg SNARE complex is required for TGN homotypic fusion

Jason H. Brickner; Jennifer M. Blanchette; György Sipos; Robert S. Fuller

Using a new assay for membrane fusion between late Golgi/endosomal compartments, we have reconstituted a rapid, robust homotypic fusion reaction between membranes containing Kex2p and Ste13p, two enzymes resident in the yeast trans-Golgi network (TGN). Fusion was temperature, ATP, and cytosol dependent. It was inhibited by dilution, Ca+2 chelation, N-ethylmaleimide, and detergent. Coimmunoisolation confirmed that the reaction resulted in cointegration of the two enzymes into the same bilayer. Antibody inhibition experiments coupled with antigen competition indicated a requirement for soluble NSF attachment protein receptor (SNARE) proteins Tlg1p, Tlg2p, and Vti1p in this reaction. Membrane fusion also required the rab protein Vps21p. Vps21p was sufficient if present on either the Kex2p or Ste13p membranes alone, indicative of an inherent symmetry in the reaction. These results identify roles for a Tlg SNARE complex composed of Tlg1p, Tlg2p, Vti1p, and the rab Vps21p in this previously uncharacterized homotypic TGN fusion reaction.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Optimization of protease-inhibitor interactions by randomizing adventitious contacts

Tomoko Komiyama; Bryan VanderLugt; Martin Fugère; Robert W. Day; Randal J. Kaufman; Robert S. Fuller

Polypeptide protease inhibitors are often found to inhibit targets with which they did not coevolve, as in the case of high-affinity inhibition of bacterial subtilisin by the leech inhibitor eglin c. Two kinds of contacts exist in such complexes: (i) reactive site loop-active site contacts and (ii) interactions outside of these that form the broader enzyme-inhibitor interface. We hypothesized that the second class of “adventitious” contacts could be optimized to generate significant increases in affinity for a target enzyme or discrimination of an inhibitor for closely related target proteases. We began with a modified eglin c, Arg-42–Arg-45–eglin, in which the reactive site loop had been optimized for subtilisin-related processing proteases of the Kex2/furin family. We randomized 10 potential adventitious contact residues and screened for inhibition of soluble human furin. Substitutions at one of these sites, Y49, were also screened against yeast Kex2 and human PC7. These screens identified not only variants that exhibited increased affinity (up to 20-fold), but also species that exhibited enhanced selectivity, that is, increased discrimination between the target enzymes (up to 41-fold for furin versus PC7 and 20-fold for PC7 versus furin). One variant, Asp-49–Arg-42–Arg-45–eglin, exhibited a Ki of 310 pM for furin and blocked furin-dependent processing of von Willebrand factor in COS-1 cells when added to the culture medium of the cells. The exploitation of adventitious contact sites may provide a versatile technique for developing potent, selective inhibitors for newly discovered proteases and could in principle be applied to optimize numerous protein–protein interactions.


Antimicrobial Agents and Chemotherapy | 2005

Protection from Anthrax Toxin-Mediated Killing of Macrophages by the Combined Effects of Furin Inhibitors and Chloroquine

Tomoko Komiyama; Joel A. Swanson; Robert S. Fuller

ABSTRACT Cell surface proteolytic processing of anthrax protective antigen by furin or other furin-related proteases is required for its oligomerization, endocytosis, and function as a translocon for anthrax lethal and edema factors. Countering toxin lethality is essential to developing effective chemotherapies for anthrax infections that have proceeded beyond the stage at which antibiotics are effective. The primary target for toxin is the macrophage, which can be killed by lethal factor via both necrotic and apoptotic pathways. Here we show that three high-affinity inhibitors of furin efficiently blocked killing of murine J774A.1 macrophages by recombinant protective antigen plus lethal factor: RRD-eglin and RRDG-eglin, developed by engineering the protein protease inhibitor eglin c, and the peptide boronic acid inhibitor acetyl-Arg-Glu-Lys-boroArg pinanediol. Inhibition of killing was dose dependent and correlated with prevention of protective antigen processing. Previous studies have shown that weak bases, such as chloroquine, which neutralize acidic compartments, also interfere with toxin-dependent killing. Here we show that combining furin inhibitors and chloroquine strongly augments the inhibition of toxin-dependent killing, suggesting that combined use of antifurin drugs and chloroquine might provide enhanced therapeutic benefits. Reversible furin inhibitors protected against anthrax toxin killing for at least 5 h, but by 8 h, toxin-dependent killing resumed even though furin inhibitors were still active. An irreversible chloromethylketone inhibitor did not exhibit this loss of protection.


Journal of Biological Chemistry | 2004

Plasticity of Extended Subsites Facilitates Divergent Substrate Recognition by Kex2 and Furin

Laura Rozan; Damian J. Krysan; Nathan C. Rockwell; Robert S. Fuller

Yeast Kex2 and human furin are subtilisin-related proprotein convertases that function in the late secretory pathway and exhibit similar though distinguishable patterns of substrate recognition. Although both enzymes prefer Arg at P1 and basic residues at P2, the two differ in recognition of P4 and P6 residues. To probe P4 and P6 recognition by Kex2p, furin-like substitutions were made in the putative S4 and S6 subsites of Kex2. T252D and Q283E mutations were introduced to increase the preference for Arg at P4 and P6, respectively. Glu255 was replaced with Ile to limit recognition of P4 Arg. The effects of putative S4 and S6 mutations were determined by examining the cleavage by purified mutant enzymes of a series of fluorogenic substrates with systematic changes in P4 and/or P6. Whereas wild Kex2 exhibited little preference type for Arg at P6, the T252D mutant and T252D/Q283E double mutant exhibited clear interactions with P6 Arg. Moreover, the T252D and T252D/Q283E substitutions altered the influence of the P6 residue on P4 recognition. We infer that cross-talk between S4 and S6, not seen in furin, allows wild type and mutant forms of Kex2 to adapt their subsites for altered modes of recognition. This apparent plasticity may allow the subsites to rearrange their local environment to interact with different substrates in a productive manner. E255I-Kex2 exhibited significantly decreased recognition of P4 Arg in a tetrapeptide substrate with Lys at P1, although the general pattern of selectivity for aliphatic residues at P4 remained unchanged.


Molecular Biology of the Cell | 2008

Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

Mohamed E. Abazeed; Robert S. Fuller

Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome.


PLOS ONE | 2012

DSP-PP Precursor Protein Cleavage by Tolloid-Related-1 Protein and by Bone Morphogenetic Protein-1

Helena H. Ritchie; Colin T. Yee; Xu na Tang; Zhihong Dong; Robert S. Fuller

Dentin sialoprotein (DSP) and phosphophoryn (PP), acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG447↓D448DPN. DSP-PP240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP430 and PP240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog), we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1) that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP1 in processing DSP-PP in dentin matrix.

Collaboration


Dive into the Robert S. Fuller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mithu De

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge