Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. Hoover is active.

Publication


Featured researches published by Robert S. Hoover.


Journal of The American Society of Nephrology | 2011

Nedd4-2 Modulates Renal Na+-Cl− Cotransporter via the Aldosterone-SGK1-Nedd4-2 Pathway

Juan Pablo Arroyo; Dagmara Lagnaz; Caroline Ronzaud; Norma Vázquez; Benjamin S. Ko; Lauren Moddes; Dorothée Ruffieux-Daidié; Pierrette Hausel; Robert Koesters; Baoli Yang; John B. Stokes; Robert S. Hoover; Gerardo Gamba; Olivier Staub

Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channels ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.


Journal of The American Society of Nephrology | 2003

N-Glycosylation at Two Sites Critically Alters Thiazide Binding and Activity of the Rat Thiazide-sensitive Na+:Cl− Cotransporter

Robert S. Hoover; Esteban Poch; Adriana Monroy; Norma Vázquez; Toshiyuki Nishio; Gerardo Gamba; Steven C. Hebert

The rat thiazide-sensitive Na-Cl cotransporter (rNCC) is expressed in the renal distal convoluted tubule and is the site of action of an important class of antihypertensive agents, the thiazide diuretics. The amino acid sequence contains two potential N-linked glycosylation consensus sites, N404 and N424. Either enzymatic deglycosylation or tunicamycin reduced the cotransporter to its core molecular weight (113 kD). Glycosylation site single mutants expressed in oocytes ran as thick bands at 115 kD, consistent with the high-mannose glycoprotein. The double mutant produced the single thin 113-kD band seen in the deglycosylated cotransporter. Functional expression of cotransporters in Xenopus laevis oocytes revealed that the mutants displayed drastically decreased thiazide-sensitive (22)Na(+) uptake compared with wild-type NCC. Analysis of enhanced green fluorescence protein (EGFP)-tagged cotransporters demonstrated that this decrease in function is predominantly secondary to decreased surface expression. The elimination of glycosylation in the double mutant increased thiazide sensitivity by more than two orders of magnitude and also increased Cl(-) affinity. Thus, we have demonstrated that rNCC is N-glycosylated in vivo at two sites, that glycosylation is essential for efficient function and surface expression of the cotransporter, and that the elimination of glycosylation allows much greater access of thiazide diuretics to their binding site.


American Journal of Physiology-renal Physiology | 2010

RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter

Ko Br; Erik-Jan Kamsteeg; Leslie L Cooke; Lauren Moddes; Peter M. T. Deen; Robert S. Hoover

The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating ERK1/2 MAPK and decreasing NCC cell surface expression (Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, Gamba G, Hoover RS. Proc Natl Acad Sci USA 104: 20120-20125, 2007). Little is known about the mechanisms which underlie these effects on NCC activity. Regulation of NCC via changes in NCC surface expression has been reported, but endocytosis of NCC has not been demonstrated. In this study, utilizing biotinylation, internalization assays, and a dynamin dominant-negative construct, we demonstrate that the regulation of NCC by PE occurs via an enhancement in internalization of NCC and is dynamin dependent. In addition, immunoprecipitation of NCC and subsequent immunoblotting for ubiquitin showed increased ubiquitination of NCC with phorbol ester treatment. MEK1/2 inhibitors and gene silencing of RasGRP1 indicated that this effect was dependent on RasGRP1 and ERK1/2 activation. Inhibition of ubiquitination prevents any PE-mediated decrease in NCC surface expression as measured by biotinylation or NCC activity as measured by radiotracer uptake. These findings confirmed that the PE effect on NCC is mediated by endocytosis of NCC. Furthermore, ubiquitination of NCC is essential for this process and this ubiquitination is dependent upon RasGRP1-mediated ERK1/2 activation.


Hypertension | 2016

Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II–Induced Hypertension

Allison E. Norlander; Mohamed A. Saleh; Nikhil Kamat; Ko Br; Juan Gnecco; Linjue Zhu; Bethany L. Dale; Yoichiro Iwakura; Robert S. Hoover; Alicia A. McDonough; Meena S. Madhur

Angiotensin II–induced hypertension is associated with an increase in T-cell production of interleukin-17A (IL-17A). Recently, we reported that IL-17A−/− mice exhibit blunted hypertension, preserved natriuresis in response to a saline challenge, and decreased renal sodium hydrogen exchanger 3 expression after 2 weeks of angiotensin II infusion compared with wild-type mice. In the current study, we performed renal transporter profiling in mice deficient in IL-17A or the related isoform, IL-17F, after 4 weeks of Ang II infusion, the time when the blood pressure reduction in IL-17A−/− mice is most prominent. Deficiency of IL-17A abolished the activation of distal tubule transporters, specifically the sodium–chloride cotransporter and the epithelial sodium channel and protected mice from glomerular and tubular injury. In human proximal tubule (HK-2) cells, IL-17A increased sodium hydrogen exchanger 3 expression through a serum and glucocorticoid-regulated kinase 1–dependent pathway. In mouse distal convoluted tubule cells, IL-17A increased sodium–chloride cotransporter activity in a serum and glucocorticoid-regulated kinase 1/Nedd4-2–dependent pathway. In both cell types, acute treatment with IL-17A induced phosphorylation of serum and glucocorticoid-regulated kinase 1 at serine 78, and treatment with a serum and glucocorticoid-regulated kinase 1 inhibitor blocked the effects of IL-17A on sodium hydrogen exchanger 3 and sodium–chloride cotransporter. Interestingly, both HK-2 and mouse distal convoluted tubule 15 cells produce endogenous IL-17A. IL17F had little or no effect on blood pressure or renal sodium transporter abundance. These studies provide a mechanistic link by which IL-17A modulates renal sodium transport and suggest that IL-17A inhibition may improve renal function in hypertension and other autoimmune disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Phorbol ester stimulation of RasGRP1 regulates the sodium-chloride cotransporter by a PKC-independent pathway

Ko Br; Leena M. Joshi; Leslie L Cooke; Norma Vázquez; Mark W. Musch; Steven C. Hebert; Gerardo Gamba; Robert S. Hoover

The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the mammalian distal convoluted tubule (DCT) and is the site of action of one of the most effective classes of antihypertensive medications, thiazide diuretics. We developed a cell model system to assess NCC function in a mammalian cell line that natively expresses NCC, the mouse DCT (mDCT) cell line. We used this system to study the complex regulation of NCC by the phorbol ester (PE) 12-O-tetradecanoylphorbol-13-acetate (TPA), a diacylglycerol (DAG) analog. It has generally been thought that PEs mediate their effects on transporters through the activation of PKC. However, there are at least five other DAG/PE targets. Here we describe how one of those alternate targets of DAG/PE effects, Ras guanyl-releasing protein 1 (RasGRP1), mediates the PE-induced suppression of function and the surface expression of NCC. Functional assessment of NCC by using thiazide-sensitive 22Na+ uptakes revealed that TPA completely suppresses NCC function. Biotinylation experiments demonstrated that this result was primarily because of decreased surface expression of NCC. Although inhibitors of PKC had no effect on this suppression, MAPK inhibitors completely prevented the TPA effect. RasGRP1 activates the MAPK pathway through activation of the small G protein Ras. Gene silencing of RasGRP1 prevented the PE-mediated suppression of NCC activity, the activation of the H-Ras isoform of Ras, and the activation of ERK1/2 MAPK. This finding confirmed the critical role of RasGRP1 in mediating the PE-induced suppression of NCC activity through the stimulation of the MAPK pathway.


Journal of Hypertension | 2013

Insulin Increases the Functional Activity of the Renal NaCl cotransporter

María Chávez-Canales; Juan Pablo Arroyo; Benajmin Ko; Norma Vázquez; Rocio Bautista; María Castañeda-Bueno; Norma A. Bobadilla; Robert S. Hoover; Gerardo Gamba

Objectives: Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter (NCC). However, the effect of insulin on NCC functional activity has not been reported. Methods: Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex-vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. Results: In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex-vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of phosphatidylinositol 3-kinase (PI3K), mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild-type or mutant versions of with no lysine kinase 1, with no lysine kinase 4, or serum glucocorticoid kinase 1, but it was no longer observed in the presence of wild-type or the dominant negative, catalytically inactive with no lysine kinase 3, implicating this kinase in the process. Conclusion: Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus.


American Journal of Physiology-renal Physiology | 2012

A new model of the distal convoluted tubule

Ko Br; Abinash C. Mistry; Lauren N Hanson; Rickta Mallick; Leslie L Cooke; Bradley K. Hack; Patrick N. Cunningham; Robert S. Hoover

The Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na(+) balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl(-)-dependent (22)Na(+) uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC.


Journal of Biological Chemistry | 2014

A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells.

Jacob Richards; Ko Br; Sean All; Kit-Yan Cheng; Robert S. Hoover; Michelle L. Gumz

Background: The role of the circadian protein Per1 in the regulation of sodium reabsorption in the distal convoluted tubule (DCT) is unknown. Results: Per1 transcriptionally regulates the sodium transporter NCC and the WNK kinase cascade. Conclusion: Per1 regulates sodium reabsorption in the DCT through NCC and the WNK cascade. Significance: These data demonstrate a role for Per1 in the regulation of renal sodium transporters. It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent 22Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4.


American Journal of Physiology-renal Physiology | 2013

Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway

Ko Br; Abinash C. Mistry; Lauren N Hanson; Rickta Mallick; B. M. Wynne; Tiffany L. Thai; James L. Bailey; Janet D. Klein; Robert S. Hoover

Hypertension is a leading cause of morbidity and mortality worldwide, and disordered sodium balance has long been implicated in its pathogenesis. Aldosterone is perhaps the key regulator of sodium balance and thus blood pressure. The sodium chloride cotransporter (NCC) in the distal convoluted tubule of the kidney is a major site of sodium reabsorption and plays a key role in blood pressure regulation. Chronic exposure to aldosterone increases NCC protein expression and function. However, more acute effects of aldosterone on NCC are unknown. In our salt-abundant modern society where chronic salt deprivation is rare, understanding the acute effects of aldosterone is critical. Here, we examined the acute effects (12-36 h) of aldosterone on NCC in the rodent kidney and in a mouse distal convoluted tubule cell line. Studies demonstrated that aldosterone acutely stimulated NCC activity and phosphorylation without affecting total NCC abundance or surface expression. This effect was dependent upon the presence of the mineralocorticoid receptor and serum- and glucocorticoid-regulated kinase 1 (SGK1). Furthermore, STE20/SPS-1-related proline/alanine-rich kinase (SPAK) phosphorylation also increased, and gene silencing of SPAK eliminated the effect of aldosterone on NCC activity. Aldosterone administration via a minipump in adrenalectomized rodents confirmed an increase in NCC phosphorylation without a change in NCC total protein. These data indicate that acute aldosterone-induced SPAK-dependent phosphorylation of NCC increases individual transporter activity.


Current Opinion in Nephrology and Hypertension | 2009

Molecular physiology of the thiazide-sensitive sodium-chloride cotransporter.

Ko Br; Robert S. Hoover

Purpose of reviewThis review summarizes recent advances in the understanding of the molecular physiology and regulation of the thiazide-sensitive sodium–chloride cotransporter (NCC). Recent findingsMutations of with-no-lysine (WNK) kinases 1 and 4 result in hyperactivity of NCC and familial hyperkalemic hypertension, a genetic syndrome of hypertension. Recent studies have shown that WNK1 and WNK4 activate the STE20 family protein kinases Ste20-related proline/alanine-rich kinase and odd-skipped-related 1, resulting in phosphorylation and activation of NCC. Additionally, a mouse knock-in model for a WNK4 familial hyperkalemic hypertension mutant demonstrated increased Ste20-related proline/alanine-rich kinase/odd-skipped-related 1 and NCC phosphorylation. It is unclear how these studies fit with the data indicating that WNK4 inhibits NCC, and the familial hyperkalemic hypertension mutations of WNK4 are loss-of-function mutations. Another WNK kinase, WNK3, also regulates NCC, activating NCC and antagonizing the effect of WNK4. Extracellular signal-related kinase 1/2 mitogen-activated protein kinase activation by Ras guanyl nucleotide-releasing protein 1 is another kinase pathway that appears to be a potent regulator of NCC. Other studies have described a role for angiotensin II in pressure natriuresis via actions on NCC. Recent studies examining the hormonal regulation of NCC have implicated angiotensin II and aldosterone in regulation of the WNK4–Ste20-related proline/alanine-rich kinase–NCC pathway. SummaryNCC is subject to a complex regulatory network of kinases, which appear quite sensitive to alterations of the hormonal and physiologic milieu.

Collaboration


Dive into the Robert S. Hoover's collaboration.

Top Co-Authors

Avatar

Ko Br

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerardo Gamba

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Norma Vázquez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge