Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. McNeill is active.

Publication


Featured researches published by Robert S. McNeill.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process

Rui P. Galvao; Anita Kasina; Robert S. McNeill; Jordan E. Harbin; Oded Foreman; Roel G.W. Verhaak; Akiko Nishiyama; C. Ryan Miller; Hui Zong

Significance How malignant gliomas arise in a mature brain remains a mystery, which hinders the development of effective treatments. Which cell types can escape their quiescent, adult state and how they do so is unknown. Additionally, because gliomas are only detected at advanced stages, the full course of transformation remains uncharacterized. Here we report that adult oligodendrocyte precursor cells, despite their relatively quiescent properties, can be reactivated to a highly proliferative state by p53 and NF1 mutations and give rise to malignant gliomas. Furthermore, we describe the early phase of gliomagenesis for the first time, revealing a multistep process of reactivation, dormancy, and final transformation in which mammalian target of rapamycin signaling plays a critical role at both early and late steps. How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.


Neuro-oncology | 2013

Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis

Mark Vitucci; Natalie O. Karpinich; Ryan E. Bash; Andrea M. Werneke; Ralf S. Schmid; Kristen K. White; Robert S. McNeill; Byron Huff; Sophie Wang; Terry Van Dyke; C. Ryan Miller

BACKGROUND Glioblastoma (GBM) genomes feature recurrent genetic alterations that dysregulate core intracellular signaling pathways, including the G1/S cell cycle checkpoint and the MAPK and PI3K effector arms of receptor tyrosine kinase (RTK) signaling. Elucidation of the phenotypic consequences of activated RTK effectors is required for the design of effective therapeutic and diagnostic strategies. METHODS Genetically defined, G1/S checkpoint-defective cortical murine astrocytes with constitutively active Kras and/or Pten deletion mutations were used to systematically investigate the individual and combined roles of these 2 RTK signaling effectors in phenotypic hallmarks of glioblastoma pathogenesis, including growth, migration, and invasion in vitro. A novel syngeneic orthotopic allograft model system was used to examine in vivo tumorigenesis. RESULTS Constitutively active Kras and/or Pten deletion mutations activated both MAPK and PI3K signaling. Their combination led to maximal growth, migration, and invasion of G1/S-defective astrocytes in vitro and produced progenitor-like transcriptomal profiles that mimic human proneural GBM. Activation of both RTK effector arms was required for in vivo tumorigenesis and produced highly invasive, proneural-like GBM. CONCLUSIONS These results suggest that cortical astrocytes can be transformed into GBM and that combined dysregulation of MAPK and PI3K signaling revert G1/S-defective astrocytes to a primitive gene expression state. This genetically-defined, immunocompetent model of proneural GBM will be useful for preclinical development of MAPK/PI3K-targeted, subtype-specific therapies.


Neuro-oncology | 2015

Contemporary murine models in preclinical astrocytoma drug development

Robert S. McNeill; Mark Vitucci; Jing Wu; C. Ryan Miller

Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision, targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ultimately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocytomas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug development for specific, molecularly defined subsets of tumors.


Neuro-oncology | 2016

Core pathway mutations induce de-differentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation but resistant to temozolomide

Ralf S. Schmid; Jeremy M. Simon; Mark Vitucci; Robert S. McNeill; Ryan E. Bash; Andrea M. Werneke; Lauren Huey; Kristen K. White; Matthew G. Ewend; Jing Wu; C. Ryan Miller

BACKGROUND Glioma stem cells (GSCs) from human glioblastomas (GBMs) are resistant to radiation and chemotherapy and may drive recurrence. Treatment efficacy may depend on GSCs, expression of DNA repair enzymes such as methylguanine methyltransferase (MGMT), or transcriptome subtype. METHODS To model genetic alterations in human GBM core signaling pathways, we induced Rb knockout, Kras activation, and Pten deletion mutations in cortical murine astrocytes. Neurosphere culture, differentiation, and orthotopic transplantation assays were used to assess whether these mutations induced de-differentiation into GSCs. Genome-wide chromatin landscape alterations and expression profiles were examined by formaldehyde-assisted isolation of regulatory elements (FAIRE) seq and RNA-seq. Radiation and temozolomide efficacy were examined in vitro and in an allograft model in vivo. Effects of radiation on transcriptome subtype were examined by microarray expression profiling. RESULTS Cultured triple mutant astrocytes gained unlimited self-renewal and multilineage differentiation capacity. These cells harbored significantly altered chromatin landscapes that were associated with downregulation of astrocyte- and upregulation of stem cell-associated genes, particularly the Hoxa locus of embryonic transcription factors. Triple-mutant astrocytes formed serially transplantable glioblastoma allografts that were sensitive to radiation but expressed MGMT and were resistant to temozolomide. Radiation induced a shift in transcriptome subtype of GBM allografts from proneural to mesenchymal. CONCLUSION A defined set of core signaling pathway mutations induces de-differentiation of cortical murine astrocytes into GSCs with altered chromatin landscapes and transcriptomes. This non-germline genetically engineered mouse model mimics human proneural GBM on histopathological, molecular, and treatment response levels. It may be useful for dissecting the mechanisms of treatment resistance and developing more effective therapies.


The Journal of Experimental Biology | 2012

The formation and functional consequences of heterogeneous mitochondrial distributions in skeletal muscle.

B. Pathi; Stephen T. Kinsey; M. E. Howdeshell; C. Priester; Robert S. McNeill; Bruce R. Locke

SUMMARY Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O2 concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle. We used light and transmission electron microscopy and stereology to examine fiber size, capillarity and mitochondrial distribution in fish red and white muscle, fish white muscle that undergoes extreme hypertrophic growth, and four fiber types in mouse muscle. The observed distributions were compared with those generated using a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function. Reaction-diffusion analysis of metabolites such as oxygen, ATP, ADP and PCr involved in energy metabolism and mitochondrial function were considered. Coupled to the reaction-diffusion approach was a CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber. The model results were consistent with the experimental observations and showed higher mitochondrial densities near the capillaries because of the sometimes steep gradients in oxygen. The present study found that selective removal of mitochondria in the presence of low prevailing local oxygen concentrations is likely the primary factor dictating the spatial heterogeneity of mitochondria in a diversity of fibers. The model results also suggest decreased diffusional constraints corresponding to the heterogeneous mitochondrial distribution assessed using the effectiveness factor, defined as the ratio of the reaction rate in the system with finite rates of diffusion to that in the absence of any diffusion limitation. Thus, the non-uniform distribution benefits the muscle fiber by increasing the energy status and increasing sustainable metabolic rates.


Brain Pathology | 2017

Intrinsic astrocyte heterogeneity influences tumor growth in glioma mouse models.

David M. Irvin; Robert S. McNeill; Ryan E. Bash; C. Ryan Miller

The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte‐derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis.


Neuro-oncology | 2017

Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma

Robert S. McNeill; Demitra A. Canoutas; Timothy J. Stuhlmiller; Harshil Dhruv; David M. Irvin; Ryan E. Bash; Steven P. Angus; Laura E. Herring; Jeremy M. Simon; Kasey R. Skinner; Juanita C. Limas; Xin Chen; Ralf S. Schmid; Marni B. Siegel; Amanda E.D. Van Swearingen; Michael J. Hadler; Erik P. Sulman; Jann N. Sarkaria; Carey K. Anders; Lee M. Graves; Michael E. Berens; Gary L. Johnson; C. Ryan Miller

Background Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Prognosis remains poor despite multimodal therapy. Developing alternative treatments is essential. Drugs targeting kinases within the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) effectors of receptor tyrosine kinase (RTK) signaling represent promising candidates. Methods We previously developed a non-germline genetically engineered mouse model of GBM in which PI3K and MAPK are activated via Pten deletion and KrasG12D in immortalized astrocytes. Using this model, we examined the influence of drug potency on target inhibition, alternate pathway activation, efficacy, and synergism of single agent and combination therapy with inhibitors of these 2 pathways. Efficacy was then examined in GBM patient-derived xenografts (PDX) in vitro and in vivo. Results PI3K and mitogen-activated protein kinase kinase (MEK) inhibitor potency was directly associated with target inhibition, alternate RTK effector activation, and efficacy in mutant murine astrocytes in vitro. The kinomes of GBM PDX and tumor samples were heterogeneous, with a subset of the latter harboring MAPK hyperactivation. Dual PI3K/MEK inhibitor treatment overcame alternate effector activation, was synergistic in vitro, and was more effective than single agent therapy in subcutaneous murine allografts. However, efficacy in orthotopic allografts was minimal. This was likely due to dose-limiting toxicity and incomplete target inhibition. Conclusion Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.


Journal of Visualized Experiments | 2014

Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

Robert S. McNeill; Ralf S. Schmid; Ryan E. Bash; Mark Vitucci; Kristen K. White; Andrea M. Werneke; Brian H. Constance; Byron Huff; C. Ryan Miller

Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.


Neuro-oncology | 2017

Genomic profiles of low-grade murine gliomas evolve during progression to glioblastoma

Mark Vitucci; David M. Irvin; Robert S. McNeill; Ralf S. Schmid; Jeremy M. Simon; Harshil Dhruv; Marni B. Siegel; Andrea M. Werneke; Ryan E. Bash; Seungchan Kim; Michael E. Berens; C. R. Miller

Background Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear. Methods We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease. Results Knockout of all 3 retinoblastoma (Rb) family proteins was required to initiate low-grade tumors in adult mouse astrocytes. Mutations activating mitogen-activated protein kinase signaling, specifically KrasG12D, potentiated Rb-mediated tumorigenesis. Low-grade tumors showed mutant Kras-specific transcriptome profiles but lacked copy number mutations. These tumors stochastically progressed to high-grade, in part through acquisition of copy number mutations. High-grade tumor transcriptomes were heterogeneous and consisted of 3 subtypes that mimicked human mesenchymal, proneural, and neural glioblastomas. Subtypes were confirmed in validation sets of high-grade mouse tumors initiated by different driver mutations as well as human patient-derived xenograft models and glioblastoma tumors. Conclusion These results suggest that oncogenic driver mutations influence the genomic profiles of low-grade tumors and that these, as well as progression-acquired mutations, contribute strongly to the genomic heterogeneity across high-grade tumors.


PLOS ONE | 2018

PIK3CA missense mutations promote glioblastoma pathogenesis, but do not enhance targeted PI3K inhibition

Robert S. McNeill; Emily E. Stroobant; Erin Smithberger; Demitra A. Canoutas; Madison K. Butler; Abigail K. Shelton; Shrey D. Patel; Juanita C. Limas; Kasey R. Skinner; Ryan E. Bash; Ralf S. Schmid; C. Ryan Miller

Background Glioblastoma (GBM) is the most common adult primary brain tumor. Multimodal treatment is empiric and prognosis remains poor. Recurrent PIK3CA missense mutations (PIK3CAmut) in GBM are restricted to three functional domains: adaptor binding (ABD), helical, and kinase. Defining how these mutations influence gliomagenesis and response to kinase inhibitors may aid in the clinical development of novel targeted therapies in biomarker-stratified patients. Methods We used normal human astrocytes immortalized via expression of hTERT, E6, and E7 (NHA). We selected two PIK3CAmut from each of 3 mutated domains and induced their expression in NHA with (NHARAS) and without mutant RAS using lentiviral vectors. We then examined the role of PIK3CAmut in gliomagenesis in vitro and in mice, as well as response to targeted PI3K (PI3Ki) and MEK (MEKi) inhibitors in vitro. Results PIK3CAmut, particularly helical and kinase domain mutations, potentiated proximal PI3K signaling and migration of NHA and NHARAS in vitro. Only kinase domain mutations promoted NHA colony formation, but both helical and kinase domain mutations promoted NHARAS tumorigenesis in vivo. PIK3CAmut status had minimal effects on PI3Ki and MEKi efficacy. However, PI3Ki/MEKi synergism was pronounced in NHA and NHARAS harboring ABD or helical mutations. Conclusion PIK3CAmut promoted differential gliomagenesis based on the mutated domain. While PIK3CAmut did not influence sensitivity to single agent PI3Ki, they did alter PI3Ki/MEKi synergism. Taken together, our results demonstrate that a subset of PIK3CAmut promote tumorigenesis and suggest that patients with helical domain mutations may be most sensitive to dual PI3Ki/MEKi treatment.

Collaboration


Dive into the Robert S. McNeill's collaboration.

Top Co-Authors

Avatar

C. Ryan Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ryan E. Bash

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ralf S. Schmid

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mark Vitucci

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrea M. Werneke

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David M. Irvin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kristen K. White

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Demitra A. Canoutas

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Gary L. Johnson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jeremy M. Simon

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge