Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. Steneck is active.

Publication


Featured researches published by Robert S. Steneck.


Science | 2007

Coral Reefs Under Rapid Climate Change and Ocean Acidification

Ove Hoegh-Guldberg; Peter J. Mumby; Anthony J. Hooten; Robert S. Steneck; P. F. Greenfield; Edgardo D. Gomez; C. D. Harvell; Peter F. Sale; Alasdair J. Edwards; Ken Caldeira; Nancy Knowlton; C. M. Eakin; Roberto Iglesias-Prieto; Nyawira A. Muthiga; Roger Bradbury; A. Dubi; Marea E. Hatziolos

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.


Science | 2008

A Global Map of Human Impact on Marine Ecosystems

Benjamin S. Halpern; Shaun Walbridge; Kimberly A. Selkoe; Carrie V. Kappel; Fiorenza Micheli; Caterina D'Agrosa; John F. Bruno; Kenneth S. Casey; Colin Ebert; Helen E. Fox; Rod Fujita; Dennis Heinemann; Hunter S. Lenihan; Elizabeth M. P. Madin; Matthew T. Perry; Elizabeth R. Selig; Mark Spalding; Robert S. Steneck; Reg Watson

The management and conservation of the worlds oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.


Environmental Conservation | 2002

Kelp forest ecosystems: biodiversity, stability, resilience and future

Robert S. Steneck; Michael H. Graham; Bruce J. Bourque; Debbie Corbett; Jon M. Erlandson; James A. Estes; Mia J. Tegner

Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.


Current Biology | 2007

Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change

Terence P. Hughes; Maria J. Rodrigues; David R. Bellwood; Daniela M. Ceccarelli; Ove Hoegh-Guldberg; Natalie A. Moltschaniwskyj; Morgan S. Pratchett; Robert S. Steneck; Bette L. Willis

Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly.


Oikos | 1994

A functional group approach to the structure of algal-dominated communities

Robert S. Steneck; Megan N. Dethier

We suggest that relatively few species attributes are of overriding importance to the structure of benthic marine algal communities and that these are often shared among taxonomically distant species. Data from the western North Atlantic, eastern North Pacific and Caribbean suggest that patterns in algal biomass, diversity and dominance are strikingly convergent when examined at a functional group level relative to the productivity and herbivore-induced disturbance potentials of the environment. We present a simple graphical model that provides a way to predict algal community composition based on these two environmental axes. This predictability stems from algal functional groups having characteristic rates of mass-specific productivity, thallus longevity and canopy height that cause them to «behave» in similar ways (...)


Trends in Ecology and Evolution | 2010

Rising to the challenge of sustaining coral reef resilience

Terry P. Hughes; Nicholas A. J. Graham; Jeremy B. C. Jackson; Peter J. Mumby; Robert S. Steneck

Phase-shifts from one persistent assemblage of species to another have become increasingly commonplace on coral reefs and in many other ecosystems due to escalating human impacts. Coral reef science, monitoring and global assessments have focused mainly on producing detailed descriptions of reef decline, and continue to pay insufficient attention to the underlying processes causing degradation. A more productive way forward is to harness new theoretical insights and empirical information on why some reefs degrade and others do not. Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management.


Coral Reefs | 2009

Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

Geoffrey P. Jones; Glenn R. Almany; Garry R. Russ; Peter F. Sale; Robert S. Steneck; M. J. H. van Oppen; Bette L. Willis

The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.


Trends in Ecology and Evolution | 2008

Coral reef management and conservation in light of rapidly evolving ecological paradigms

Peter J. Mumby; Robert S. Steneck

The decline of many coral reef ecosystems in recent decades surprised experienced managers and researchers. It shattered old paradigms that these diverse ecosystems are spatially uniform and temporally stable on the scale of millennia. We now see reefs as heterogeneous, fragile, globally stressed ecosystems structured by strong positive or negative feedback processes. We review the causes and consequences of reef decline and ask whether management practices are addressing the problem at appropriate scales. We conclude that both science and management are currently failing to address the comanagement of extractive activities and ecological processes that drive ecosystems (e.g. productivity and herbivory). Most reef conservation efforts are directed toward reserve implementation, but new approaches are needed to sustain ecosystem function in exploited areas.


Marine Policy | 2010

Guiding ecological principles for marine spatial planning

Melissa M. Foley; Benjamin S. Halpern; Fiorenza Micheli; Matthew H. Armsby; Margaret R. Caldwell; Caitlin M. Crain; Erin Prahler; Nicole Rohr; Deborah Sivas; Michael W. Beck; Mark H. Carr; Larry B. Crowder; J. Emmett Duffy; Sally D. Hacker; Karen L. McLeod; Stephen R. Palumbi; Charles H. Peterson; Helen M. Regan; Mary Ruckelshaus; Paul A. Sandifer; Robert S. Steneck

The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP--maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity--and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.


Ecology | 1990

HABITAT ARCHITECTURE AND THE ABUNDANCE AND BODY-SIZE-DEPENDENT HABITAT SELECTION OF A PHYTAL AMPHIPOD'

Sally D. Hacker; Robert S. Steneck

Field and laboratory experiments were conducted on the effect of habitat architecture (the number, size, shape, and arrangement of habitable spaces and structures) created by benthic algae on the habitat selection of an abundant mobile amphipod, Gam- marellus angulosus, on the central coast of Maine. Amphipod population density and body size were determined in algae of different morphologies that provided amphipods with different habitat architectures. The two primary components of habitat architecture in this system were spatial (the number and size of spaces between fronds) and structural (the number, length, and width of fronds). These were measured for algae of specific mor- phologies and for artificial plants that mimicked these morphologies. Field experiments using algae and algal mimic counterparts showed that there were significantly higher den- sities of amphipods in algae with branched and filamentous morphologies than in those algae with foliose and leathery macrophyte morphologies. There was also a significant correspondence between the body size of amphipods and both components of habitat architecture. Laboratory experiments using algae and algal mimics excluded food value, predation, competition, and physical disruption in experimental treatments. When these processes were excluded, patterns of abundance and body-size scaling to habitat dimensions were the same as those in the field. It appears, through the use of algal mimics, that the spatial component (space between fronds) is an important factor in determining amphipod demographic patterns in algae. Algal mimics of different surface rugosity and color indicate that tenacity and crypsis are also important components in habitat selection of amphipods.

Collaboration


Dive into the Robert S. Steneck's collaboration.

Researchain Logo
Decentralizing Knowledge