Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Sablowski is active.

Publication


Featured researches published by Robert Sablowski.


Current Biology | 2005

Arabidopsis KNOXI proteins activate cytokinin biosynthesis

Osnat Yanai; Eilon Shani; Karel Dolezal; Petr Tarkowski; Robert Sablowski; Göran Sandberg; Alon Samach; Naomi Ori

Plant architecture is shaped through the continuous formation of organs by meristems. Class I KNOTTED1-like homeobox (KNOXI) genes are expressed in the shoot apical meristem (SAM) and are required for SAM maintenance. KNOXI proteins and cytokinin, a plant hormone intimately associated with the regulation of cell division, share overlapping roles, such as meristem maintenance and repression of senescence, but their mechanistic and hierarchical relationship have yet to be defined. Here, we show that activation of three different KNOXI proteins using an inducible system resulted in a rapid increase in mRNA levels of the cytokinin biosynthesis gene isopentenyl transferase 7 (AtIPT7) and in the activation of ARR5, a cytokinin response factor. We further demonstrate a rapid and dramatic increase in cytokinin levels following activation of the KNOXI protein SHOOT MERISTEMLESS (STM). Application of exogenous cytokinin or expression of a cytokinin biosynthesis gene through the STM promoter partially rescued the stm mutant. We conclude that activation of cytokinin biosynthesis mediates KNOXI function in meristem maintenance. KNOXI proteins emerge as central regulators of hormone levels in plant meristems.


Development | 2005

Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.

Concepción Gómez-Mena; Stefan de Folter; Maria Manuela R. Costa; Gerco C. Angenent; Robert Sablowski

Floral organs, whose identity is determined by specific combinations of homeotic genes, originate from a group of undifferentiated cells called the floral meristem. In Arabidopsis, the homeotic gene AGAMOUS (AG) terminates meristem activity and promotes development of stamens and carpels. To understand the program of gene expression activated by AG, we followed genome-wide expression during early stamen and carpel development. The AG target genes included most genes for which mutant screens revealed a function downstream of AG. Novel targets were validated by in situ hybridisation and binding to AG in vitro and in vivo. Transcription factors formed a large fraction of AG targets, suggesting that during early organogenesis, much of the genetic program is concerned with elaborating gene expression patterns. The results also suggest that AG and other homeotic proteins with which it interacts (SEPALLATA3, APETALA3, PISTILLATA) are coordinately regulated in a positive-feedback loop to maintain their own expression, and that AG activates biosynthesis of gibberellin, which has been proposed to promote the shift from meristem identity to differentiation.


Genes & Development | 2010

Gibberellins control fruit patterning in Arabidopsis thaliana

Nicolas Arnaud; Thomas Girin; Karim Sorefan; Sara Fuentes; Thomas A. Wood; Tom Lawrenson; Robert Sablowski; Lars Østergaard

The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hypersensitivity to DNA damage in plant stem cell niches

Nick Fulcher; Robert Sablowski

The growing apices of plants contain stem cells that continually produce tissues, which, in the shoot, include the germline. These stem cell populations remain active throughout the plants life, which can last for centuries, and are particularly exposed to environmental hazards that cause DNA damage and mutations. It is not known whether plants have mechanisms to safeguard the genome specifically in these crucial cell populations. Here, we show that root and shoot stem cells and their early descendants are selectively killed by mild treatment with radiomimetic drugs, x-rays, or mutations that disrupt DNA repair by nonhomologous end-joining. Stem cell death required transduction of DNA damage signals by the ATAXIA-TELANGIECTASIA MUTATED (ATM) kinase and, specifically in the root, also the ATM/RAD3-RELATED (ATR) kinase. Consistent with the absence of p53 and the core apoptotic machinery in plants, death of the stem cells did not show apoptotic but autolytic features as seen in other cases of plant developmentally programmed cell death. We propose that plants have independently evolved selective death as a stringent mechanism to safeguard genome integrity in their stem cell populations.


PLOS Biology | 2013

JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field

Susanna Sauret-Güeto; Katharina Schiessl; Andrew Bangham; Robert Sablowski; Enrico Coen

Computational modeling and experimentation show how Arabidopsis petals develop their size and shape through a growth pattern that is distinct to, but operates within, the developmental framework that also controls leaf shape.


Current Opinion in Plant Biology | 2011

Plant stem cell niches: from signalling to execution

Robert Sablowski

The shoot and root meristems contain small populations of stem cells that constantly renew themselves while providing precursor cells to build all other plant tissues and organs. Cell renewal, growth and differentiation in the meristems are co-ordinated by networks of transcription factors and intercellular signals. The past two years have revealed how auxin and cytokinin signals are integrated with each other and with regulatory genes in the shoot and root meristems. Small RNAs have also emerged as novel intercellular signals. Downstream of meristem regulatory genes, links have been made to cell division control and chromatin function. Protection of genome integrity, partly through programmed cell death after DNA damage, has recently been revealed as a specialised function in plant stem cells.


Journal of Experimental Botany | 2014

Interplay between cell growth and cell cycle in plants

Robert Sablowski; Marcelo Carnier Dornelas

The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.


Current Biology | 2012

JAGGED Controls Growth Anisotropy and Coordination between Cell Size and Cell Cycle during Plant Organogenesis

Katharina Schiessl; Swathi Kausika; Paul Southam; Max Bush; Robert Sablowski

Summary Background In all multicellular organisms, the links between patterning genes, cell growth, cell cycle, cell size homeostasis, and organ growth are poorly understood, partly due to the difficulty of dynamic, 3D analysis of cell behavior in growing organs. A crucial step in plant organogenesis is the emergence of organ primordia from the apical meristems. Here, we combined quantitative, 3D analysis of cell geometry and DNA synthesis to study the role of the transcription factor JAGGED (JAG), which functions at the interface between patterning and primordium growth in Arabidopsis flowers. Results The floral meristem showed isotropic growth and tight coordination between cell volume and DNA synthesis. Sepal primordia had accelerated cell division, cell enlargement, anisotropic growth, and decoupling of DNA synthesis from cell volume, with a concomitant increase in cell size heterogeneity. All these changes in growth parameters required JAG and were genetically separable from primordium emergence. Ectopic JAG activity in the meristem promoted entry into S phase at inappropriately small cell volumes, suggesting that JAG can override a cell size checkpoint that operates in the meristem. Consistent with a role in the transition from meristem to primordium identity, JAG directly repressed the meristem regulatory genes BREVIPEDICELLUS and BELL 1 in developing flowers. Conclusions We define the cellular basis for the transition from meristem to organ identity and identify JAG as a key regulator of this transition. JAG promotes anisotropic growth and is required for changes in cell size homeostasis associated with accelerated growth and the onset of differentiation in organ primordia.


Journal of Cell Science | 2006

The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination

Claudia Kerzendorfer; Julien Vignard; Andrea Pedrosa-Harand; Tanja Siwiec; Svetlana Akimcheva; Sylvie Jolivet; Robert Sablowski; Susan J. Armstrong; Dieter Schweizer; Raphael Mercier; Peter Schlögelhofer

Mnd1 has recently been identified in yeast as a key player in meiotic recombination. Here we describe the identification and functional characterisation of the Arabidopsis homologue, AtMND1, which is essential for male and female meiosis and thus for plant fertility. Although axial elements are formed normally, sister chromatid cohesion is established and recombination initiation appears to be unaffected in mutant plants, chromosomes do not synapse. During meiotic progression, a mass of entangled chromosomes, interconnected by chromatin bridges, and severe chromosome fragmentation are observed. These defects depend on the presence of SPO11-1, a protein that initiates recombination by catalysing DNA double-strand break (DSB) formation. Furthermore, we demonstrate that the AtMND1 protein interacts with AHP2, the Arabidopsis protein closely related to budding yeast Hop2. These data demonstrate that AtMND1 plays a key role in homologous synapsis and in DSB repair during meiotic recombination.


Current Biology | 2011

The same regulatory point mutation changed seed-dispersal structures in evolution and domestication.

Nicolas Arnaud; Tom Lawrenson; Lars Østergaard; Robert Sablowski

It is unclear whether gene regulatory changes that drive evolution at the population and species levels [1-3] can be extrapolated to higher taxonomic levels. Here, we investigated the role of cis-regulatory changes in fruit evolution within the Brassicaceae family. REPLUMLESS (RPL, At5g02030) controls development of the replum, a structure with an important role in fruit opening and seed dispersal [6]. We show that reduced repla resembling the Arabidopsis rpl mutant correlated across the Brassicaceae with a point mutation in a conserved cis-element of RPL. When introduced in Arabidopsis, this nucleotide change specifically reduced RPL expression and function in the fruit. Conversely, Brassica RPL containing the Arabidopsis version of the cis-element was sufficient to convert the Brassica replum to an Arabidopsis-like morphology. A mutation in the same nucleotide position of the same cis-element in a RPL ortholog has been independently selected to reduce seed dispersal during domestication of rice, in spite of its very different fruit anatomy. Thus, single-nucleotide regulatory mutations at the same position explain developmental variation in seed-dispersal structures at the population and family levels and suggest that the same genetic toolkit is relevant to domestication and natural evolution in widely diverged species.

Collaboration


Dive into the Robert Sablowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Serrano-Mislata

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Andrew Bangham

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Bush

Norwich Research Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Farcot

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge