Robert Sachsenhofer
Martin Luther University of Halle-Wittenberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Sachsenhofer.
Journal of Materials Chemistry | 2007
Wolfgang H. Binder; Robert Sachsenhofer; Christoph J. Straif; Ronald Zirbs
A new, simple and highly versatile method for the surface modification of luminescent cadmium selenide nanoparticles (CdSe NPs) based on 1,3-dipolar cycloaddition reactions is described. Uniform, trioctylphosphine oxide (TOPO)-covered CdSe NPs were prepared and subjected to two ligand-exchange reactions: first, ligand exchange was accomplished with pyridine, fully removing the TOPO ligand from the CdSe surface. In a second step, either 1-[(3-azidopropyl)octylphosphinoyl]octane or hex-5-ynoic acid 3-(dioctylphosphinoyl)propyl ester were added, attaching an azido or an acetylene moiety to the NP surface. Further thermal or Cu(I)-mediated 1,3-dipolar cycloaddition reactions on the residual azido/acetylene moieties with a variety of acetylenes/azides furnished the modified CdSe NPs with supramolecular receptors (i.e. barbituric acid, thymine, oligoethyleneglycol) on their surface. Photoluminescence measurements reveal a ∼50% residual quantum yield (relative to TOPO-covered CdSe NPs) after ligand modification, thus presenting an efficient pathway towards luminescent, surface modified CdSe NPs. The presence of the different functional groups was proven by 1H-NMR, 31P-NMR spectroscopy and by use of a nanoparticle-bound spiropyran dye and subsequent fluorescence quenching experiments. In order to further exploit the ligands on the CdSe NP surfaces, supramolecular recognition via binding to self-assembled monolayers (SAMs) presenting the matching receptor was investigated, leading to dense layers of CdSe NPs on planar surfaces as verified by AFM measurements. The concept offers a simple method for guiding the binding and recognition of luminescent CdSe NPs and related NPs onto surfaces.
Langmuir | 2009
Hangsheng Li; Robert Sachsenhofer; Wolfgang H. Binder; Thomas Henze; Thomas Thurn-Albrecht; Karsten Busse; Jörg Kressler
Langmuir monolayers and Langmuir-Blodgett (LB) film morphologies of block copolymers and hydrophobically modified iron oxide nanoparticles were studied by surface pressure-mean molecular area (pi-mmA) measurements and by tapping mode atomic force microscopy (AFM). The amphiphilic diblock copolymers consisted of a hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic poly(isobutylene) (PIB) block. The pi-mmA isotherm of PEO(97)-b-PIB(37) (the subscripts refer to the respective degrees of polymerization) at the air/water interface had an extended plateau reflecting the extension of PEO chains into the water subphase at a surface pressure of 10 mN.m(-1), which is absent for the more hydrophobic PEO(19)-b-PIB(130). Iron oxide (Fe(2)O(3)) nanoparticles capped with oleic acid ligands as the shell were dispersed in the amphiphilic block copolymers at the air/water interface to prevent macroscopic aggregation of the particles. When the nanoparticles were mixed with PEO(97)-b-PIB(37), using a particle to polymer chain ratio of 1:100, macroscopic aggregation of the nanoparticles was not observed, and the pi-mmA isotherm was dominated by PEO(97)-b-PIB(37). Monolayers of block copolymers were transferred at different surface pressures from the air/water interface to hydrophilic silicon substrates using the Langmuir-Blodgett technique. The AFM images of PEO(97)-b-PIB(37) LB films depicted not only the typical finger-like morphology of the crystallized PEO blocks but also PIB blocks arranged in vertical columns growing perpendicular to the substrate surface. The columns are characteristic for PEO(19)-b-PIB(130) LB films after transfer at high surface pressures and can be assigned to a mesomorphic PIB phase with ordered chains. Finally, it was observed that small clusters of a few Fe(2)O(3) nanoparticles occupy the top of PIB phases after compression and transfer of the block copolymer nanoparticle mixtures to solid supports.
Journal of Nanomaterials | 2008
Wolfgang H. Binder; Harald Weinstabl; Robert Sachsenhofer
A method for the preparation of ligand-covered superparamagnetic iron oxide nanoparticles via exchange reactions is described. 1,2-diol-ligands are used to provide a stable binding of the terminally modified organic ligands onto the surface of --nanoparticles ( nm). The 1,2-diol-ligands are equipped with variable terminal functional groups (i.e., hydrogen bonding moieties, azido- bromo-, fluorescent moieties) and can be easily prepared via osmium tetroxide-catalyzed 1,2-dihydroxylation reactions of the corresponding terminal alkenes. Starting from octylamine-covered --nanoparticles, ligand exchange was effected at C over 24–48 hours, whereupon complete ligand exchange is taking place as proven by thermogravimetric (TGA)- and IR-spectroscopic measurements. A detailed kinetic analysis of the ligand exchange reaction was performed via TGA analysis, demonstrating a complete ligand exchange after 24 hours. The method offers a simple approach for the generation of various --nanoparticles with functional organic shells in a one-step procedure.
Macromolecular Rapid Communications | 2007
Wolfgang H. Binder; Robert Sachsenhofer
Macromolecular Rapid Communications | 2008
Wolfgang H. Binder; Robert Sachsenhofer
Physical Chemistry Chemical Physics | 2007
Wolfgang H. Binder; Robert Sachsenhofer; Dominique Farnik; Dieter Blaas
Macromolecular Rapid Communications | 2008
Wolfgang H. Binder; Robert Sachsenhofer
Click Chemistry for Biotechnology and Materials Science | 2009
Wolfgang H. Binder; Robert Sachsenhofer
Macromolecular Symposia | 2007
Robert Sachsenhofer; Wolfgang H. Binder; Dominique Farnik; Ronald Zirbs
Journal of Nanomaterials | 2009
Wolfgang H. Binder; Marina Lomoschitz; Robert Sachsenhofer; Gernot Friedbacher