Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Saf is active.

Publication


Featured researches published by Robert Saf.


Analytical Chemistry | 2012

Highly Photostable Near-Infrared Fluorescent pH Indicators and Sensors Based on BF2-Chelated Tetraarylazadipyrromethene Dyes

Tijana Jokic; Sergey M. Borisov; Robert Saf; Daniel A. Nielsen; Michael Kühl; Ingo Klimant

In this study, a series of new BF2-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660–710 nm and fluorescence emission maxima at 680–740 nm. Indicators have high molar absorption coefficients of ∼80 000 M–1 cm–1, good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pKa values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pKa values in sensor films derived from fluorescence data show 0.5–1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated.


Inorganic Chemistry | 2013

Synthesis and properties of new phosphorescent red light-excitable platinum(II) and palladium(II) complexes with Schiff bases for oxygen sensing and triplet-triplet annihilation-based upconversion.

Sergey M. Borisov; Robert Saf; Roland C. Fischer; Ingo Klimant

New Pt(II) and Pd(II) complexes with donor-acceptor Schiff bases are conveniently prepared in only two steps. The complexes efficiently absorb in the red part of the spectrum (ε > 10(5) M(-1) cm(-1)) and show moderate to strong room-temperature phosphorescence in the near-infrared (NIR) region. Particularly, Pt(II) complexes possess phosphorescence quantum yields (Φ) of ~10%, but the emission of the respective Pd(II) complexes is less efficient (Φ ≈ 1%-2%). The complexes exhibit solvatochromic behavior, in which the absorption and emission spectra shift bathochromically in polar solvents. The Pt(II) complexes are embedded in polystyrene to produce oxygen-sensing materials. The Pd(II) and Pt(II) complexes are demonstrated to be efficient sensitizers in triplet-triplet annihilation-based upconversion systems.


European Journal of Inorganic Chemistry | 2011

Strongly Phosphorescent Iridium(III)-Porphyrins - New Oxygen Indicators with Tuneable Photophysical Properties and Functionalities.

Klaus Koren; Sergey M. Borisov; Robert Saf; Ingo Klimant

Synthesis and characterization of four iridium(III)–octaethylporphyrins and a π-extended iridium(III)–benzoporphyrin are presented. Strong room-temperature phosphorescence was observed for all of the complexes with quantum yields of up to 30 %. Axial ligands were introduced to tune the photophysical properties and the solubility. Complexes bearing lipophilic ligands such as pyridine or N-(n-butyl)imidazole were incorporated into polystyrene to obtain optical oxygen sensors. Covalent coupling of the dye is possible by introduction of ligands with binding domains (1-imidazoleacetic acid). This enabled preparation of a water-soluble oxygen probe (by staining bovine serum albumin) and a trace oxygen sensor (by coupling to amino-modified silica gel).


Journal of Lipid Research | 2007

Import and fate of fluorescent analogs of oxidized phospholipids in vascular smooth muscle cells

Alexandra Moumtzi; Michael Trenker; Karlheinz Flicker; Robert Saf; Albin Hermetter

Lipid oxidation is now thought to be an initiating and sustaining event in atherogenesis. Oxidatively fragmented phospholipids, namely 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), present in minimally modified LDL and atherosclerotic lesions, have been reported to elicit a wide range of pathophysiological responses in the cells of the vascular wall. Nevertheless, the question of their potential sites of action and their primary molecular targets remains open. To address this issue, a series of fluorescently labeled analogs, which differ with regard to structure and binding site of the fluorophore, were synthesized and used as tools for studying the uptake, intracellular stability, and distribution of PGPC and POVPC in vascular smooth muscle cells (VSMCs). We demonstrate that in accordance with their lysophospholipid-like structure, these highly similar molecules transferred rapidly either from aqueous phospholipid dispersions or preloaded native LDL into VSMCs, producing disparate fluorescence patterns irrespective of the attached fluorophore. PGPC derivatives were translocated to the lysosomes. In sharp contrast, POVPC analogs were initially captured in the plasma membrane, most likely in consequence of the formation of covalent adducts with free amino and sulfhydryl groups of proteins and phospholipids. LDL internalization is not required for cellular lipid uptake. Collectively, our data provide evidence that oxidized phospholipids, owing to their high exchangeability between lipoproteins and cell membranes, may act within a short time on different cellular sites in VSMCs and affect various lipid and protein components through physical or chemical interactions, which might then serve as starting points for intracellular signaling.


Journal of the American Chemical Society | 2013

Acylgermanes: Photoinitiators and Sources for Ge-Centered Radicals. Insights into their Reactivity

Dmytro Neshchadin; Arnulf Rosspeintner; Markus Griesser; Bernhard Felix Lang; Sandra Mosquera-Vazquez; Eric Vauthey; Vitaly Gorelik; Robert Liska; Christian Hametner; Beate Ganster; Robert Saf; Norbert Moszner; Georg Gescheidt

Acylgermanes have been shown to act as efficient photoinitiators. In this investigation we show how dibenzoyldiethylgermane 1 reacts upon photoexcitation. Our real-time investigation utilizes femto- and nanosecond transient absorption, time-resolved EPR (50 ns), photo-chemically induced dynamic nuclear polarization, DFT calculations, and GC-MS analysis. The benzoyldiethylgermyl radical G• is formed via the triplet state of parent 1. On the nanosecond time scale this radical can recombine or undergo hydrogen-transfer reactions. Radical G• reacts with butyl acrylate at a rate of 1.2 ± 0.1 × 10(8) and 3.2 ± 0.2 × 10(8) M(-1) s(-1), in toluene and acetonitrile, respectively. This is ~1 order of magnitude faster than related phosphorus-based radicals. The initial germyl and benzoyl radicals undergo follow-up reactions leading to oligomers comprising Ge-O bonds. LC-NMR analysis of photocured mixtures containing 1 and the sterically hindered acrylate 3,3-dimethyl-2-methylenebutanoate reveals that the products formed in the course of a polymerization are consistent with the intermediates established at short time scales.


Inorganic Chemistry | 2010

Tunable Phosphorescent NIR Oxygen Indicators Based on Mixed Benzo- and Naphthoporphyrin Complexes

Fabian Niedermair; Sergey M. Borisov; Gunter Zenkl; Oliver T. Hofmann; Hansjörg Weber; Robert Saf; Ingo Klimant

A series of π-extended phosphorescent palladium(II) and platinum(II) porphyrin complexes were synthesized, in which additional benzene rings are fused radially onto at least one of the four peripheral benzo groups. The photophysical properties of the metalloporphyrins palladium(II)-meso-tetra-(4-fluorophenyl)mononaphthotribenzoporphyrin (Pd1NF), cis-palladium(II)-meso-tetra-(4-fluorophenyl)dibenzodinaphthoporphyrin (Pd2NF), and palladium(II)-meso-tetra-(4-fluorophenyl)monobenzotrinaphthoporphyrin (Pd3NF) and the corresponding platinum(II) compounds (Pt1NF, cis-Pt2NF, Pt3NF) were investigated. The compounds under investigation absorb intensively in the near-infrared region (628−691 nm) and emit at room temperature at 815−882 nm. Phosphorescence quantum yields of the platinum(II) porphyrins range from 25 to 53% with luminescence decay times of 21 to 44 μs in deoxygenated toluene solutions at room temperature. The corresponding palladium(II) complexes exhibit quantum yields in the range of 7 to 18% with lifetimes of 106 to 206 μs. Density functional theory (DFT) calculations revealed nonplanar geometries for all complexes and corroborate the absorption characteristics. The subsequent π extension of the porphyrin system leads to near-infrared absorbing oxygen indicators with tailor-made luminescence properties as well as tunable oxygen sensitivity.


ChemBioChem | 2005

Novel Fluorescent Phosphonic Acid Esters for Discrimination of Lipases and Esterases

Hannes Schmidinger; Ruth Birner-Gruenberger; Gernot Riesenhuber; Robert Saf; Heidrun Susani-Etzerodt; Albin Hermetter

Lipases and esterases are responsible for carboxylester hydrolysis inside and outside cells and are useful biocatalysts for (stereo)selective modification of synthetic substrates. Here we describe novel fluorescent suicide inhibitors that differ in structure and polarity for screening and discrimination of lipolytic enzymes in enzyme preparations. The inhibitors covalently react with the enzymes to form fluorescent lipid–protein complexes that can be resolved by gel electrophoresis. The selectivities of the inhibitors were determined by using different (phospho)lipase, esterase and cholesterol esterase preparations. The results indicate that formation of an inhibitor–enzyme complex is highly dependent on the chemical structure of the inhibitor. We identified inhibitors with very low specificity, and other derivatives that were highly specific for certain subgroups of lipolytic enzymes such as lipases and cholesterol esterases. A combination of these substrate‐analogous activity probes represents a useful toolbox for rapid identification and classification of serine hydrolase enzymes.


ChemBioChem | 2010

Fluorous iminoalditols: a new family of glycosidase inhibitors and pharmacological chaperones.

Georg Schitter; Andreas J. Steiner; Gerit Pototschnig; Elisabeth Scheucher; Martin Thonhofer; Chris A. Tarling; Stephen G. Withers; Katrin Fantur; Eduard Paschke; Don J. Mahuran; Brigitte Rigat; Michael B. Tropak; Carina Illaszewicz; Robert Saf; Arnold E. Stütz; Tanja M. Wrodnigg

A collection of new reversible glycosidase inhibitors of the iminoalditol type featuring N‐substituents containing perfluorinated regions has been prepared for evaluation of physicochemical, biochemical and diagnostic properties. The vast variety of feasible oligofluoro moieties allows for modular approaches to customised structures according to the intended applications, which are influenced by the fluorine content as well as the distance of the fluorous moiety from the ring nitrogen. The first examples, in particular in the D‐galacto series, exhibited excellent inhibitory activities. A preliminary screen with two human cell lines showed that, at subinhibitory concentrations, they are powerful pharmacological chaperones enhancing the activities of the catalytically handicapped lysosomal D‐galactosidase mutants associated with GM1 gangliosidosis and Morquio B disease.


Tetrahedron | 1988

Enzymatic preparation of optically active 7-oxabicyclo[2.2.1] heptane derivatives

Robert Saf; Kurt Faber; Gerhard Penn; Herfried Griengl

Abstract Enzymatic resolution of endo-7-oxabicyclo [2.2.1] hept-2-yl butyrates 3 and 5 using lipase from Candida cylindracea led to optically pure bicyclic alcohols and esters being important intermediates for the synthesis of biologically active compounds.


Talanta | 2012

New fluorescent pH sensors based on covalently linkable PET rhodamines.

Daniel Aigner; Sergey M. Borisov; F. J. Fernández; Jorge F. Fernández Sánchez; Robert Saf; Ingo Klimant

A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is presented. Their pH-sensitivity derives from photoinduced electron transfer between non-protonated amino groups and the excited chromophore which results in effective fluorescence quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2′-carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5–7 which makes them suitable for monitoring biotechnological samples. To underline practical applicability, a dually lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented.

Collaboration


Dive into the Robert Saf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Kaiser

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Reto Brun

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Slugovc

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Klaus Hummel

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferdinand Hofer

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge