Robert Scheichl
University of Bath
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Scheichl.
Computing and Visualization in Science | 2011
K. A. Cliffe; Michael B. Giles; Robert Scheichl; Aretha L. Teckentrup
We consider the numerical solution of elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification for groundwater flow. We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo method, and demonstrate numerically its superiority. The asymptotic cost of solving the stochastic problem with the multilevel method is always significantly lower than that of the standard method and grows only proportionally to the cost of solving the deterministic problem in certain circumstances. Numerical calculations demonstrating the effectiveness of the method for one- and two-dimensional model problems arising in groundwater flow are presented.
Numerische Mathematik | 2007
Ivan G. Graham; P. O. Lechner; Robert Scheichl
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte–Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e., two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method.
SIAM Journal on Numerical Analysis | 2013
Julia Charrier; Robert Scheichl; Aretha L. Teckentrup
We consider a finite element approximation of elliptic partial differential equations with random coefficients. Such equations arise, for example, in uncertainty quantification in subsurface flow modeling. Models for random coefficients frequently used in these applications, such as log-normal random fields with exponential covariance, have only very limited spatial regularity and lead to variational problems that lack uniform coercivity and boundedness with respect to the random parameter. In our analysis we overcome these challenges by a careful treatment of the model problem almost surely in the random parameter, which then enables us to prove uniform bounds on the finite element error in standard Bochner spaces. These new bounds can then be used to perform a rigorous analysis of the multilevel Monte Carlo method for these elliptic problems that lack full regularity and uniform coercivity and boundedness. To conclude, we give some numerical results that confirm the new bounds.
Numerische Mathematik | 2013
Aretha L. Teckentrup; Robert Scheichl; Michael B. Giles; Elisabeth Ullmann
We consider the application of multilevel Monte Carlo methods to elliptic PDEs with random coefficients. We focus on models of the random coefficient that lack uniform ellipticity and boundedness with respect to the random parameter, and that only have limited spatial regularity. We extend the finite element error analysis for this type of equation, carried out in Charrier et al. (SIAM J Numer Anal, 2013), to more difficult problems, posed on non-smooth domains and with discontinuities in the coefficient. For this wider class of model problem, we prove convergence of the multilevel Monte Carlo algorithm for estimating any bounded, linear functional and any continuously Fréchet differentiable non-linear functional of the solution. We further improve the performance of the multilevel estimator by introducing level dependent truncations of the Karhunen–Loève expansion of the random coefficient. Numerical results complete the paper.
Journal of Computational Physics | 2011
Ivan G. Graham; Frances Y. Kuo; Dirk Nuyens; Robert Scheichl; Ian H. Sloan
We devise and implement quasi-Monte Carlo methods for computing the expectations of nonlinear functionals of solutions of a class of elliptic partial differential equations with random coefficients. Our motivation comes from fluid flow in random porous media, where relevant functionals include the fluid pressure/velocity at any point in space or the breakthrough time of a pollution plume being transported by the velocity field. Our emphasis is on situations where a very large number of random variables is needed to model the coefficient field. As an alternative to classical Monte Carlo, we here employ quasi-Monte Carlo methods, which use deterministically chosen sample points in an appropriate (usually high-dimensional) parameter space. Each realization of the PDE solution requires a finite element (FE) approximation in space, and this is done using a realization of the coefficient field restricted to a suitable regular spatial grid (not necessarily the same as the FE grid). In the statistically homogeneous case the corresponding covariance matrix can be diagonalized and the required coefficient realizations can be computed efficiently using FFT. In this way we avoid the use of a truncated Karhunen-Loeve expansion, but introduce high nominal dimension in parameter space. Numerical experiments with 2-dimensional rough random fields, high variance and small length scale are reported, showing that the quasi-Monte Carlo method consistently outperforms the Monte Carlo method, with a smaller error and a noticeably better than O(N^-^1^/^2) convergence rate, where N is the number of samples. Moreover, the rate of convergence of the quasi-Monte Carlo method does not appear to degrade as the nominal dimension increases. Examples with dimension as high as 10^6 are reported.
Numerische Mathematik | 2014
Nicole Spillane; Victorita Dolean; Patrice Hauret; Frédéric Nataf; Clemens Pechstein; Robert Scheichl
Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property.
Computing | 2007
Robert Scheichl; Eero Vainikko
SummaryWe develop a new coefficient-explicit theory for two-level overlapping domain decomposition preconditioners with non-standard coarse spaces in iterative solvers for finite element discretisations of second-order elliptic problems. We apply the theory to the case of smoothed aggregation coarse spaces introduced by Vanek, Mandel and Brezina in the context of algebraic multigrid (AMG) and are particularly interested in the situation where the diffusion coefficient (or the permeability) α is highly variable throughout the domain. Our motivating example is Monte Carlo simulation for flow in rock with permeability modelled by log–normal random fields. By using the concept of strong connections (suitably adapted from the AMG context) we design a two-level additive Schwarz preconditioner that is robust to strong variations in α as well as to mesh refinement. We give upper bounds on the condition number of the preconditioned system which do not depend on the size of the subdomains and make explicit the interplay between the coefficient function and the coarse space basis functions. In particular, we are able to show that the condition number can be bounded independent of the ratio of the two values of α in a binary medium even when the discontinuities in the coefficient function are not resolved by the coarse mesh. Our numerical results show that the bounds with respect to the mesh parameters are sharp and that the method is indeed robust to strong variations in α. We compare the method to other preconditioners and to a sparse direct solver.
Numerische Mathematik | 2015
Ivan G. Graham; Frances Y. Kuo; James A. Nichols; Robert Scheichl; Christoph Schwab; Ian H. Sloan
In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in
Numerical Linear Algebra With Applications | 2012
Peter Bastian; Markus Blatt; Robert Scheichl
Numerische Mathematik | 2011
Clemens Pechstein; Robert Scheichl
\mathbb {R}^d