Robert Sitzenfrei
University of Innsbruck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Sitzenfrei.
Water Research | 2013
Robert Sitzenfrei; M. Möderl; Wolfgang Rauch
Traditional urban water management relies on central organised infrastructure, the most important being the drainage network and the water distribution network. To meet upcoming challenges such as climate change, the rapid growth and shrinking of cities and water scarcity, water infrastructure needs to be more flexible, adaptable and sustainable (e.g., sustainable urban drainage systems, SUDS; water sensitive urban design, WSUD; low impact development, LID; best management practice, BMP). The common feature of all solutions is the push from a central solution to a decentralised solution in urban water management. This approach opens up a variety of technical and socio-economic issues, but until now, a comprehensive assessment of the impact has not been made. This absence is most likely attributable to the lack of case studies, and the availability of adequate models is usually limited because of the time- and cost-intensive preparation phase. Thus, the results of the analysis are based on a few cases and can hardly be transferred to other boundary conditions. VIBe (Virtual Infrastructure Benchmarking) is a tool for the stochastic generation of urban water systems at the city scale for case study research. With the generated data sets, an integrated city-scale analysis can be performed. With this approach, we are able to draw conclusions regarding the technical effect of the transition from existing central to decentralised urban water systems. In addition, it is shown how virtual data sets can assist with the model building process. A simple model to predict the shear stress performance due to changes in dry weather flow production is developed and tested.
Water Science and Technology | 2009
Manfred Kleidorfer; M. Möderl; Robert Sitzenfrei; Christian Urich; Wolfgang Rauch
Design and construction of urban drainage systems has to be done in a predictive way, as the average lifespan of such investments is several decades. The design engineer has to predict many influencing factors and scenarios for future development of a system (e.g. change in land use, population, water consumption and infiltration measures). Furthermore, climate change can cause increased rain intensities which leads to an additional impact on drainage systems. In this paper we compare the behaviour of different performance indicators of combined sewer systems when taking into account long-term environmental change effects (change in rainfall characteristics, change in impervious area and change in dry weather flow). By using 250 virtual case studies this approach is--in principle--a Monte Carlo Simulation in which not only parameter values are varied but the entire system structure and layout is changed in each run. Hence, results are more general and case-independent. For example the consideration of an increase of rainfall intensities by 20% has the same effect as an increase of impervious area of +40%. Such an increase of rainfall intensities could be compensated by infiltration measures in current systems which lead to a reduction of impervious area by 30%.
Environmental Modelling and Software | 2014
Gregor Burger; Robert Sitzenfrei; Manfred Kleidorfer; Wolfgang Rauch
The hydrodynamic rainfall-runoff and urban drainage simulation model SWMM (Storm Water Management Model) is a state of the art software tool applied likewise in research and practice. In order to reduce the computational burden of long simulation runs and to use the extra power of modern multi-core computers, a parallel version of SWMM is presented herein. The challenge has been to modify the software in such minimal way that the resulting code enhancement may find its way into the commercial and non-commercial software tools that depend on SWMM for its calculation engine. A pragmatic approach to identify and enhance only the critical parts of the software in terms of run-time was chosen in order to keep the code changes as low as possible. The enhanced software was first tested for coherence against the original code and then benchmarked on four different input scenarios ranging from a very small village to a medium sized urban area. For the investigated sewer systems a speedup of six to ten times on a twelve core system was realized, thus decreasing the execution time to an acceptable level even for tedious system analysis. A parallel version of SWMM for multi-core processors is herein presented.The enhanced software was first tested for coherence and then benchmarked.Changes were kept minimal in order to encourage adoption.A speedup of six to ten times on a twelve-core system was realized.
Water Science and Technology | 2010
Robert Sitzenfrei; S. Fach; H. Kinzel; Wolfgang Rauch
Analyses of case studies are used to evaluate new or existing technologies, measures or strategies with regard to their impact on the overall process. However, data availability is limited and hence, new technologies, measures or strategies can only be tested on a limited number of case studies. Owing to the specific boundary conditions and system properties of each single case study, results can hardly be generalized or transferred to other boundary conditions. virtual infrastructure benchmarking (VIBe) is a software tool which algorithmically generates virtual case studies (VCSs) for urban water systems. System descriptions needed for evaluation are extracted from VIBe whose parameters are based on real world case studies and literature. As a result VIBe writes Input files for water simulation software as EPANET and EPA SWMM. With such input files numerous simulations can be performed and the results can be benchmarked and analysed stochastically at a city scale. In this work the approach of VIBe is applied with parameters according to a section of the Inn valley and therewith 1,000 VCSs are generated and evaluated. A comparison of the VCSs with data of real world case studies shows that the real world case studies fit within the parameter ranges of the VCSs. Consequently, VIBe tackles the problem of limited availability of case study data.
Water Science and Technology | 2010
Christian Urich; Robert Sitzenfrei; M. Möderl; Wolfgang Rauch
The application of artificial case studies is a well established technique in urban drainage to test measures, approaches or models. However, the preparation of a virtual case study for a sewer system is a tedious task. Several algorithms have been presented in the literature for an automatic generation of virtual sewer systems. Applying the approach of generating virtual cities by means of the software VIBe (Virtual Infrastructure Benchmarking) the urban structure (including elevation map, land use and population distribution) is generated firstly and the infrastructure is designed meeting the requirements of the urban structure. The aim of this paper is the development of an agent based approach for generating virtual sewer systems. This new algorithm functions as module of the software VIBe but can of course also be applied to a real city in order to get information on possible/optimal sewer placement. Here hundred virtual VIBe cities and for each twelve virtual sewer networks are generated and calibrated based on data of an alpine region. It is revealed that with the approach presented virtual sewer networks which are comparable with real world sewer networks can be generated. The agent based method provides data sets for benchmarking and allows case independent testing of new measures.
Environmental Modelling and Software | 2013
Robert Sitzenfrei; M. Möderl; Wolfgang Rauch
In the field of water distribution system (WDS) analysis, case study research is needed for testing or benchmarking optimisation strategies and newly developed software. However, data availability for the investigation of real cases is limited due to time and cost needed for data collection and model setup. We present a new algorithm that addresses this problem by generating WDSs from GIS using population density, housing density and elevation as input data. We show that the resulting WDSs are comparable to actual systems in terms of network properties and hydraulic performance. For example, comparing the pressure heads for an actual and a generated WDS results in pressure head differences of ±4 m or less for 75% of the supply area. Although elements like valves and pumps are not included, the new methodology can provide water distribution systems of varying levels of complexity (e.g., network layouts, connectivity, etc.) to allow testing design/optimisation algorithms on a large number of networks. The new approach can be used to estimate the construction costs of planned WDSs aimed at addressing population growth or at comparisons of different expansion strategies in growth corridors.
Water Science and Technology | 2012
M. Mair; Robert Sitzenfrei; Manfred Kleidorfer; M. Möderl; Wolfgang Rauch
Sensitivity analysis (SA) evaluates the impact of changes in model parameters on model predictions. Such an analysis is commonly used when developing or applying environmental models to improve the understanding of underlying system behaviours and the impact and interactions of model parameters. The novelty of this paper is a geo-referenced visualization of sensitivity indices for model parameters in a combined sewer model using geographic information system (GIS) software. The result is a collection of maps for each analysis, where sensitivity indices (calculated for model parameters of interest) are illustrated according to a predefined symbology. In this paper, four types of maps (an uncertainty map, calibration map, vulnerability map, and design map) are created for an example case study. This article highlights the advantages and limitations of GIS-based SA of sewer models. The conclusion shows that for all analyzed applications, GIS-based SA is useful for analyzing, discussing and interpreting the model parameter sensitivity and its spatial dimension. The method can lead to a comprehensive view of the sewer system.
World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability | 2011
M. Möderl; C. Hellbach; Robert Sitzenfrei; M. Mair; Aditya Lukas; Ernest Mayr; Reinhard Perfler; Wolfgang Rauch
The goal of sensitivity analysis is the exploration of changes in model response resulting from a change in model input. Sensitivity analysis is a state of the art method and used in several papers and applications to improve the understanding of model behavior and to help separating influential from non-influential parameters. The novelty of this paper is that advantages of GIS in combination with model-based sensitivity analysis are highlighted and used for specific applications. The applications presented are model calibration, pipe diameter design, sensor placement, uncertainty assessment and vulnerability identification. In all cases results of sensitivity analysis are spatially joined at the location allocated by the corresponding network elements. According to the applications calibration, capacity, sensor, uncertainty and vulnerability maps are created. Further, the informative value of all these maps is demonstrated and discussed with a case study. Future work should focus on GIS based application for global sensitivity analysis.
Water Science and Technology | 2009
M. Möderl; Manfred Kleidorfer; Robert Sitzenfrei; Wolfgang Rauch
This article presents the development and application of the software tool VulNetUD. VulNetUD is a tool for GIS-based identification of vulnerable sites of urban drainage systems (UDS) using hydrodynamic simulations undertaken using EPA SWMM. The benefit of the tool is the output of different vulnerability maps rating sewer surcharging, sewer flooding, combined sewer overflow (CSO) efficiency and CSO emissions. For this, seven predefined performance indicators are used to evaluate urban drainage systems under abnormal, critical and future conditions. The application on a case study highlights the capability of the tool to identify weak points of the urban drainage systems. Thereby it is possible to identify urban drainage system components which cause the highest performance decrease across the entire system. The application of the method on a real world case study shows for instance that a reduction of catchment areas which are located upstream of CSOs with relatively less capacity in the downstream sewers achieves the highest increases efficiency of the system. Finally, the application of VulNetUD is seen as a valuable tool for managers and operators of waste water utilities to improve the efficiency of their systems. Additionally vulnerability maps generated by VulNetUD support risk management e.g. decision making in urban development planning or the development of rehabilitation strategies.
Water Science and Technology | 2009
S. Fach; Robert Sitzenfrei; Wolfgang Rauch
It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.