Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Stoehr is active.

Publication


Featured researches published by Robert Stoehr.


The Journal of Pathology | 2003

WIF1, a component of the Wnt pathway, is down‐regulated in prostate, breast, lung, and bladder cancer

Christoph Wissmann; Peter J. Wild; Simone Kaiser; Stefan Roepcke; Robert Stoehr; Matthias Woenckhaus; Glen Kristiansen; Jen‐Chih Hsieh; Ferdinand Hofstaedter; Arndt Hartmann; Ruth Knuechel; André Rosenthal; Christian Pilarsky

To detect novel Wnt‐pathway genes involved in tumourigenesis, this study analysed the RNA expression levels of 40 genes of the Wnt pathway by chip hybridization of microdissected matched pairs of 54 primary prostate carcinomas. Eleven genes showed greater than two‐fold differential expression in at least 10% of prostate cancers. Three of these genes encode extracellular components of the Wnt pathway (WNT2, WIF1, SFRP4); two are receptors (FZD4, FZD6); two belong to the intracellular signal cascade (DVL1, PPP2CB); one regulates transcription (TCF4); and three represent genes regulated by this pathway (CCND2, CD44, MYC). While SFRP4, FZD4, FZD6, DVL1, TCF4, and MYC are up‐regulated, WIF1, WNT2, PPP2CB, CCND2, and CD44 are down‐regulated in certain prostate cancer patients. Wnt inhibitory factor 1 (WIF1) and secreted frizzled related protein (SFRP4) showed the most significant aberrant expression at the RNA level. WIF1 was down‐regulated in 64% of primary prostate cancers, while SFRP4 was up‐regulated in 81% of the patients. Immunohistochemical analysis using a polyclonal antibody revealed strong cytoplasmic perinuclear WIF1 expression in normal epithelial cells of the prostate, breast, lung, and urinary bladder. Strong reduction of WIF1 protein expression was found in 23% of prostate carcinomas, but also in 60% of breast, 75% of non‐small cell lung (NSCLC), and 26% of bladder cancers analysed. No significant association between WIF1 down‐regulation and tumour stage or grade was observed for prostate, breast or non‐small cell lung carcinomas, indicating that loss of WIF1 expression may be an early event in tumourigenesis in these tissues. However, down‐regulation of WIF1 correlated with higher tumour stage in urinary bladder tumours (pTa versus pT1–pT4; p = 0.038). Copyright


Journal of Clinical Investigation | 2006

Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi

Christian Hafner; Johanna M.M. van Oers; Thomas Vogt; Michael Landthaler; Robert Stoehr; Hagen Blaszyk; Ferdinand Hofstaedter; Ellen C. Zwarthoff; Arndt Hartmann

Epidermal nevi are common congenital skin lesions with an incidence of 1 in 1,000 people; however, their genetic basis remains elusive. Germline mutations of the FGF receptor 3 (FGFR3) cause autosomal dominant skeletal disorders such as achondroplasia and thanatophoric dysplasia, which can be associated with acanthosis nigricans of the skin. Acanthosis nigricans and common epidermal nevi of the nonorganoid, nonepidermolytic type share some clinical and histological features. We used a SNaPshot multiplex assay to screen 39 epidermal nevi of this type of 33 patients for 11 activating FGFR3 point mutations. In addition, exon 19 of FGFR3 was directly sequenced. We identified activating FGFR3 mutations, almost exclusively at codon 248 (R248C), in 11 of 33 (33%) patients with nonorganoid, nonepidermolytic epidermal nevi. In 4 of these cases, samples from adjacent histologically normal skin could be analyzed, and FGFR3 mutations were found to be absent. Our results suggest that a large proportion of epidermal nevi are caused by a mosaicism of activating FGFR3 mutations in the human epidermis, secondary to a postzygotic mutation in early embryonic development. The R248C mutation appears to be a hot spot for FGFR3 mutations in epidermal nevi.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern

Christian Hafner; Elena Lopez-Knowles; Nuno M. Luis; Agustí Toll; Eulalia Baselga; Alex Fernandez-Casado; Silvia Hernández; Adriana Ribé; Thomas Mentzel; Robert Stoehr; Ferdinand Hofstaedter; Michael Landthaler; Thomas Vogt; Ramon M. Pujol; Arndt Hartmann; Francisco X. Real

Activating mutations of the p110 α subunit of PI3K (PIK3CA) oncogene have been identified in a broad spectrum of malignant tumors. However, their role in benign or preneoplastic conditions is unknown. Activating FGF receptor 3 (FGFR3) mutations are common in benign skin lesions, either as embryonic mutations in epidermal nevi (EN) or as somatic mutations in seborrheic keratoses (SK). FGFR3 mutations are also common in low-grade malignant bladder tumors, where they often occur in association with PIK3CA mutations. Therefore, we examined exons 9 and 20 of PIK3CA and FGFR3 hotspot mutations in EN (n = 33) and SK (n = 62), two proliferative skin lesions lacking malignant potential. Nine of 33 (27%) EN harbored PIK3CA mutations; all cases showed the E545G substitution, which is uncommon in cancers. In EN, R248C was the only FGFR3 mutation identified. By contrast, 10 of 62 (16%) SK revealed the typical cancer-associated PIK3CA mutations E542K, E545K, and H1047R. The same lesions displayed a wide range of FGFR3 mutations. Corresponding unaffected tissue was available for four EN and two mutant SK: all control samples displayed a WT sequence, confirming the somatic nature of the mutations found in lesional tissue. Forty of 95 (42%) lesions showed at least one mutation in either gene. PIK3CA and FGFR3 mutations displayed an independent distribution; 5/95 lesions harbored mutations in both genes. Our findings suggest that, in addition to their role in cancer, oncogenic PIK3CA mutations contribute to the pathogenesis of skin tumors lacking malignant potential. The remarkable genotype–phenotype correlation as observed in this study points to a distinct etiopathogenesis of the mutations in keratinocytes occuring either during fetal development or in adult life.


International Journal of Cancer | 2002

Clonality of multifocal urothelial carcinomas: 10 years of molecular genetic studies

Christian Hafner; Ruth Knuechel; Robert Stoehr; Arndt Hartmann

Multifocal occurrence and frequent recurrence are characteristic features of urothelial carcinomas of both the urinary bladder and the upper urinary tract. To describe the clonal nature of these tumors, 2 theories have been proposed. The monoclonality hypothesis describes the multiple tumors as descendants of a single genetically transformed cell spreading throughout the urothelium. In contrast, field cancerization caused by carcinogen exposure of the urothelium may lead to independent development of synchronous or metachronous nonrelated tumors at different sites of the urothelial tract. In the last 10 years, a multitude of molecular genetic studies have investigated the clonality of multifocal urothelial carcinomas. The majority of studies revealed a monoclonal origin of the multiple tumors. However, most of these studies investigated advanced invasive carcinomas. A small but significant proportion of multifocal urothelial carcinomas appear to arise from different clones, supporting the field‐cancerization hypothesis. Oligoclonal tumors might be more common in precursor lesions and early tumor stages. The frequent monoclonality found in patients with advanced tumors could be due to outgrowth of 1 tumor cell clone with specific genetic alterations. Two important mechanisms appear to be important for the spread of malignant cells: intraluminal seeding and intraepithelial migration. Investigation of the entire urothelial lining in patients with urothelial tumors should provide further insight into the development of multifocal urothelial carcinomas.


Laboratory Investigation | 2004

Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer

Robert Stoehr; Christoph Wissmann; Hiromu Suzuki; Ruth Knuechel; Rene C. Krieg; Eva Klopocki; Edgar Dahl; Peter J. Wild; Hagen Blaszyk; Guido Sauter; Ronald Simon; Ruediger Schmitt; Dirk Zaak; Ferdinand Hofstaedter; André Rosenthal; Stephen B. Baylin; Christian Pilarsky; Arndt Hartmann

Many molecular alterations are known to occur in urothelial carcinoma of the bladder, but their significance for tumor progression is poorly understood. Deletions of chromosome 8p are frequently found in several tumor types and are often associated with progressive disease. In all, 99 bladder tumors were screened for deletions at 8p using loss of heterozygosity (LOH) and multicolor fluorescence in situ hybridization FISH analyses. Allelic loss on chromosome 8p in at least one marker was found in 25/99 (25%) tumors. There was a significant correlation of 8p deletions with invasive tumor growth and a highly significant association with papillary growth pattern in patients with invasive disease. cDNA array analyses revealed that secreted Frizzled-related protein 1 (sFRP1), an antagonist of Frizzled receptors and Wnt pathway activation on chromosome 8p12–11.1, is frequently downregulated in bladder cancer. To investigate sFRP1 as a candidate for a putative progression-related gene on 8p, urothelial cell lines and primary urothelial carcinomas were screened for sFRP1 expression using quantitative real-time PCR, Northern blot, immunofluorescence and immunohistochemistry (IHC). Of the investigated bladder cancers, 38% showed loss of sFRP1 expression by quantitative RT-PCR. Evaluation of the protein expression by IHC using tissue microarrays containing 776 bladder cancers revealed loss or strong reduction of sFRP1 expression in 66% of cases. SFRP1 loss was associated with higher tumor stage and grade and shorter overall survival. In addition, loss of sFRP1 was an independent indicator of poor survival in patients with papillary but not with muscle invasive bladder cancer. There were neither mutations in the coding region of sFRP1 nor homozygous deletions at 8p12–11.21. However, promoter methylation was detected using methylation-specific PCR in 29% of cases. In conclusion, we could show a close correlation of chromosome 8p deletions and progression of papillary bladder tumors. The sFRP1 gene on chromosome 8p12–11.1 could be a candidate gene for the predicted, progression-related tumor suppressor gene in bladder cancer and could contribute to urothelial carcinogenesis.


European Urology | 2008

Prediction of Progression of Non-Muscle-Invasive Bladder Cancer by WHO 1973 and 2004 Grading and by FGFR3 Mutation Status: A Prospective Study

Maximilian Burger; Madelon N.M. van der Aa; Johanna M.M. van Oers; Anke Brinkmann; Theodorus H. van der Kwast; Ewout C. Steyerberg; Robert Stoehr; Wim J. Kirkels; Stefan Denzinger; Peter Wild; Wolf F. Wieland; Ferdinand Hofstaedter; Arndt Hartmann; Ellen C. Zwarthoff

OBJECTIVES The clinical management of non-muscle-invasive urothelial cell carcinoma of the bladder (UCC) is challenging, as it has a marked tendency to recur and to progress. Aim of this study was to investigate the prognostic value of the WHO 1973 and 2004 grading systems and biomarkers FGFR3, CK20 and Ki-67. METHODS In a prospective study, tumours from 221 patients were studied for the expression of CK20 and Ki-67 by immunohistochemistry, and FGFR3 status by SNaPshot mutation detection. Staging and grading were performed according to the WHO classification systems of 1973 and 2004. RESULTS : Median follow-up was 35 mo. Recurrence occurred in 72 of 221 patients. None of the parameters was able to predict disease recurrence. CK20, Ki-67, FGFR3 mutation, molecular grade using FGFR3 mutation analysis and Ki-67, and histological grading and staging were significantly associated with disease progression in stage. In multivariable analyses, WHO 1973 and 2004 grading systems remained statistically significant and independent predictors of progression, with p=0.005 for WHO 1973 and p=0.004 for 2004. FGFR3 status was able to discriminate progressors from nonprogressors in a subset of patients with high-grade UCC (p=0.009). CONCLUSIONS This is the first prospective study comparing the WHO 1973 and 2004 grading systems. We show that both grading systems contribute valuable independent information. Therefore, it should be considered whether a better grading system could be developed that incorporates essential elements from both. The combination of WHO 2004 grading with FGFR3 status allows a better risk stratification for patients with high-grade non-muscle-invasive UCC.


The Journal of Pathology | 2003

Frequent genetic alterations in flat urothelial hyperplasias and concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses.

Ellen C. Obermann; Kerstin Junker; Robert Stoehr; Wolfgang Dietmaier; Dirk Zaak; J. Schubert; Ferdinand Hofstaedter; Ruth Knuechel; Arndt Hartmann

Flat urothelial hyperplasia, defined as markedly thickened urothelium without cytological atypia, is regarded in the new WHO classification as a urothelial lesion without malignant potential. Frequent deletions of chromosome 9 detected by fluorescence in situ hybridization (FISH) have been previously reported in flat urothelial hyperplasias found in patients with papillary bladder cancer. Using comparative genomic hybridization (CGH) and microsatellite analysis, these hyperplasias and concomitant papillary tumours of the same patients were screened for other genetic alterations to validate and extend the previous findings. Eleven flat hyperplasias detected by 5‐ALA‐induced fluorescence endoscopy and ten papillary urothelial carcinomas (pTaG1–G2) from ten patients were investigated. After microdissection, the DNA of the lesions was pre‐amplified using whole genome amplification (I‐PEP‐PCR). Loss of heterozygosity (LOH) analyses were performed with five microsatellite markers at chromosomes 9p, 9q, and 17p. CGH was performed using standard protocols. In 6 of 11 hyperplasias and 7 of 10 papillary tumours, deletions at chromosome 9 were simultaneously shown by FISH, LOH, and CGH analyses. There was a good correlation between FISH, LOH, and CGH analyses, with identical results in 6 of 10 patients. In addition to deletions at chromosome 9, further genetic alterations were detected by CGH in 9 of 10 investigated hyperplasias, including changes frequently found in invasive papillary bladder cancer (loss of chromosomes 2q, 4, 8p, and 11p; gain of chromosome 17; and amplification at 11q12q13). There was considerable genetic heterogeneity between hyperplasias and papillary tumours, but a clonal relationship was suggested by LOH and/or CGH analyses in 5 of 10 cases. These data support the hypothesis that flat urothelial hyperplasias can display many genetic alterations commonly found in bladder cancer and could therefore be an early neoplastic lesion in the multistep development of invasive urothelial carcinoma. Copyright


Clinical Cancer Research | 2005

Gene Expression Profiling of Progressive Papillary Noninvasive Carcinomas of the Urinary Bladder

Peter Wild; Alexander Herr; Christoph Wissmann; Robert Stoehr; André Rosenthal; Dirk Zaak; Ronald Simon; Ruth Knuechel; Christian Pilarsky; Arndt Hartmann

Purpose: The aim of the present study was to define gene expression profiles of noninvasive and invasive bladder cancer, to identify potential therapeutic or screening targets in bladder cancer, and to define genetic changes relevant for tumor progression of recurrent papillary bladder cancer (pTa). Experimental Design: Overall, 67 bladder neoplasms (46 pTa, 3 pTis, 10 pT1, and 8 pT2) and eight normal bladder specimens were investigated by a combination of laser microdissection and gene expression profiling. Eight of 16 patients with recurrent noninvasive papillary bladder tumors developed carcinoma in situ (pTis) or invasive bladder cancer (≥pT1G2) in the course of time. RNA expression results of the putative progression marker cathepsin E (CTSE) were confirmed by immunohistochemistry using high-throughput tissue microarray analysis (n = 776). Univariate analysis of factors regarding overall survival, progression-free survival, and recurrence-free survival in patients with urothelial bladder cancer was done. Results: Hierarchical cluster analyses revealed no differences between pTaG1 and pTaG2 tumors. However, distinct groups of invasive cancers with different gene expression profiles in papillary and solid tumors were found. Progression-associated gene profiles could be defined (e.g., FABP4 and CTSE) and were already present in the preceding noninvasive papillary tumors. CTSE expression (P = 0.003) and a high Ki-67 labeling index of at least 5% (P = 0.01) were the only factors that correlated significantly with progression-free survival of pTa tumors in our gene expression approach. Conclusions: Gene expression profiling revealed novel genes with potential clinical utility to select patients that are more likely to develop aggressive disease.


PLOS ONE | 2012

Detection of Methylated SEPT9 in Plasma Is a Reliable Screening Method for Both Left- and Right-Sided Colon Cancers

Kinga Tóth; Ferenc Sipos; Alexandra Kalmár; Árpád V. Patai; Barnabás Wichmann; Robert Stoehr; Henriette Golcher; Vera Schellerer; Zsolt Tulassay; Béla Molnár

Background Methylated Septin 9 (SEPT9) is a sensitive biomarker for colorectal cancer (CRC) from peripheral blood. However, its relationship to cancer localization, guaiac-based fecal occult blood test (gFOBT) and carcinoembryonic antigen (CEA) have not been described. Methodology/Principal Findings Plasma samples were collected for SEPT9 analysis from patients with no evidence of disease (NED) (n = 92) before colonoscopy and CRC (n = 92) before surgical treatment. DNA was isolated and bisulfite-converted using Epi proColon kit 2.0. Qualitative determination was performed using Epi proColon 2.0 RT-PCR assay. Samples for gFOBT and CEA analysis were collected from NED (n = 17 and 27, respectively) and CRC (n = 22 and 27, respectively). SEPT9 test was positive in 15.2% (14/92) of NED and 95.6% (88/92) of CRC, including 100% (67/67) from stage II to stage IV CRC and 84% (21/25) of stage I CRC when a sample was called positive if 1 out of 3 PCR replicates was positive. In a second analysis (2 out of 3 PCR replicates) specificity improved to 99% (91/92) of NEDs, at a sensitivity of 79.3% (73/92) of SEPT9 positives in CRC. gFOBT was positive in 29.4% (5/17) of NED and 68.2% (15/22) of CRC and elevated CEA levels were detected in 14.8% (4/27) of NED and 51.8% (14/27) of CRC. Both SEPT9 (84.8%) and CEA (85.2%) showed higher specificity than gFOBT (70.6%). SEPT9 was positive in 96.4% (54/56) of left-sided colon cancer (LSCC) cases and 94.4% (34/36) of right-sided colon cancer (RSCC) cases. gFOBT was positive in 83.3% (10/12) of cases with LSCC and 50% (5/10) of cases with RSCC, elevated CEA was detected 60% (9/15) of LSCC and 41.7% (5/12) of RSCC. Conclusions/Significance The high degree of sensitivity and specificity of SEPT9 in plasma makes it a better method to detect CRC than gFOBT and CEA, even for the more difficult to detect RSCC.


PLOS ONE | 2010

Two Multiplex Assays That Simultaneously Identify 22 Possible Mutation Sites in the KRAS, BRAF, NRAS and PIK3CA Genes

Irene Lurkin; Robert Stoehr; Carolyn D. Hurst; Angela A.G. van Tilborg; Margaret A. Knowles; Arndt Hartmann; Ellen C. Zwarthoff

Recently a number of randomized trials have shown that patients with advanced colorectal cancer do not benefit from therapies targeting the epidermal growth factor receptor when their tumors harbor mutations in the KRAS, BRAF and PIK3CA genes. We developed two multiplex assays that simultaneously screen 22 nucleotides in the KRAS, NRAS, BRAF and PIK3CA genes for mutations. The assays were validated on 294 tumor DNA samples from patients with advanced colorectal cancer. In these samples 119 KRAS codon 12 and 13 mutations had been identified by sequence analysis, 126 tumors were wild-type for KRAS and the analysis failed in 49 of the 294 samples due to poor DNA quality. The two mutation assays detected 130 KRAS mutations, among which were 3 codon 61 mutations, and in addition 32 PIK3CA, 13 BRAF and 6 NRAS mutations. In 19 tumors a KRAS mutation was found together with a mutation in the PIK3CA gene. One tumor was mutant for both PIK3CA and BRAF. In summary, the mutations assays identified 161 tumors with a mutation, 120 were wild-type and the analysis failed in 13. The material cost of the 2 mutation assays was calculated to be 8-fold lower than the cost of sequencing required to obtain the same data. In addition, the mutation assays are less labor intensive. We conclude that the performance of the two multiplex mutation assays was superior to direct sequencing. In addition, these assays are cheaper and easier to interpret. The assays may also be of use for selection of patients with other tumor types.

Collaboration


Dive into the Robert Stoehr's collaboration.

Top Co-Authors

Avatar

Arndt Hartmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ferdinand Hofstaedter

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Wullich

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Wach

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Bertz

University of Regensburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge