Robert Szulcek
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Szulcek.
Journal of Visualized Experiments | 2014
Robert Szulcek; Harm J. Bogaard; Geerten P. van Nieuw Amerongen
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
Cardiovascular Research | 2013
Robert Szulcek; Cora M.L. Beckers; Jasmina Hodzic; Jelle de Wit; Zhenlong Chen; Tim Grob; René J.P. Musters; Richard D. Minshall; Victor W.M. van Hinsbergh; Geerten P. van Nieuw Amerongen
AIMS Endothelial cells (ECs) control vascular permeability by forming a monolayer that is sealed by extracellular junctions. Various mediators modulate the endothelial barrier by acting on junctional protein complexes and the therewith connected F-actin cytoskeleton. Different Rho GTPases participate in this modulation, but their mechanisms are still partly resolved. Here, we aimed to elucidate whether the opening and closure of the endothelial barrier are associated with distinct localized RhoA activities at the subcellular level. METHODS AND RESULTS Live fluorescence resonance energy transfer (FRET) microscopy revealed spatially distinct RhoA activities associated with different aspects of the regulation of endothelial monolayer integrity. Unstimulated ECs were characterized by hotspots of RhoA activity at their periphery. Thrombin receptor activation in the femoral vein of male wistar rats and in cultured ECs enhanced RhoA activity at membrane protrusions, followed by a more sustained RhoA activity associated with cytoplasmic F-actin filaments, where prolonged RhoA activity coincided with cellular contractility. Unexpectedly, thrombin-induced peripheral RhoA hotspots were not spatially correlated to the formation of large inter-endothelial gaps. Rather, spontaneous RhoA activity at membrane protrusions coincided with the closure of inter-endothelial gaps. Electrical impedance measurements showed that RhoA signalling is essential for this protrusive activity and maintenance of barrier restoration. CONCLUSION Spontaneous RhoA activity at membrane protrusions is spatially associated with closure, but not formation of inter-endothelial gaps, whereas RhoA activity at distant contractile filaments contributes to thrombin-induced disruption of junctional integrity. Thus, these data indicate that distinct RhoA activities are associated with disruption and re-annealing of endothelial junctions.
Pulmonary circulation | 2013
Farnaz R. Bakhshi; Mao Mao; Ayesha N. Shajahan; Tobias Piegeler; Zhenlong Chen; Olga Chernaya; Tiffany Sharma; W. Mark Elliott; Robert Szulcek; Harm J. Bogaard; Suzy Comhair; Serpil C. Erzurum; Geerten P. van Nieuw Amerongen; Marcelo G. Bonini; Richard D. Minshall
In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α–induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%–80%, similar to that observed in IPAH patient–derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress.
Cardiovascular Research | 2016
Remco Haasdijk; Wijnand den Dekker; Caroline Cheng; Dennie Tempel; Robert Szulcek; Frank L. Bos; Dorien M. A. Hermkens; Ihsan Chrifi; Maarten M. Brandt; Chris Van Dijk; Yan Juan Xu; Esther van de Kamp; Lau Blonden; Jan van Bezu; Judith C. Sluimer; Erik A.L. Biessen; Geerten P. van Nieuw Amerongen; H.J. Duckers
AIMS Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function. We sought to characterize the role of THSD1 in endothelial cells during vascular development and cardiovascular disease. METHODS AND RESULTS Functional knockdown of Thsd1 in zebrafish embryos and in a murine retina vascularization model induced severe haemorrhaging without affecting neovascular growth. In human carotid endarterectomy specimens, THSD1 expression by endothelial cells was detected in advanced atherosclerotic lesions with intraplaque haemorrhaging, but was absent in stable lesions, implying involvement of THSD1 in neovascular bleeding. In vitro, stimulation with pro-atherogenic factors (3% O2 and TNFα) decreased THSD1 expression in human endothelial cells, whereas stimulation with an anti-atherogenic factor (IL10) showed opposite effect. Therapeutic evaluation in a murine advanced atherosclerosis model showed that Thsd1 overexpression decreased plaque vulnerability by attenuating intraplaque vascular leakage, subsequently reducing macrophage accumulation and necrotic core size. Mechanistic studies in human endothelial cells demonstrated that THSD1 activates FAK-PI3K, leading to Rac1-mediated actin cytoskeleton regulation of adherens junctions and focal adhesion assembly. CONCLUSION THSD1 is a new regulator of endothelial barrier function during vascular development and protects intraplaque microvessels against haemorrhaging in advanced atherosclerotic lesions.
PLOS ONE | 2015
Robert Szulcek; Jan van Bezu; Johannes Boonstra; Jack J. W. A. van Loon; Geerten P. van Nieuw Amerongen
Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion.
Circulation | 2017
Denielli da Silva Gonçalves Bós; Cathelijne E. van der Bruggen; Kondababu Kurakula; Xiao-Qing Sun; Karina Rabello Casali; Adenauer G. Casali; Nina Rol; Robert Szulcek; Cris dos Remedios; Christophe Guignabert; Ly Tu; Peter Dorfmüller; Marc Humbert; Paul J.M. Wijnker; D.W.D. Kuster; Jolanda van der Velden; Marie-José Goumans; Harm-Jan Bogaard; Anton Vonk-Noordegraaf; Frances S. de Man; M. Louis Handoko
Background: The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). Methods: Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (&agr;-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. Results: Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, &agr;-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV &agr;-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. Conclusions: RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH.
Cardiovascular Research | 2018
Nina Rol; Michiel Alexander de Raaf; Xiaoqing Q Sun; Vincent P Kuiper; Denielli da Silva Gonçalves Bós; Chris Happé; Kondababu Kurakula; Chris Dickhoff; Raphaël Thuillet; Ly Tu; Christophe Guignabert; Ingrid Schalij; Kirsten Lodder; Xiaoke Pan; Franziska Herrmann; Geerten P. van Nieuw Amerongen; Pieter Koolwijk; Anton Vonk-Noordegraaf; Frances S. de Man; Lutz Wollin; Marie-José Goumans; Robert Szulcek; Harm J. Bogaard
Aims Pulmonary arterial hypertension (PAH) is associated with increased levels of circulating growth factors and corresponding receptors such as platelet derived growth factor, fibroblast growth factor and vascular endothelial growth factor. Nintedanib, a tyrosine kinase inhibitor targeting primarily these receptors, is approved for the treatment of patients with idiopathic pulmonary fibrosis. Our objective was to examine the effect of nintedanib on proliferation of human pulmonary microvascular endothelial cells (MVEC) and assess its effects in rats with advanced experimental pulmonary hypertension (PH). Methods and results Proliferation was assessed in control and PAH MVEC exposed to nintedanib. PH was induced in rats by subcutaneous injection of Sugen (SU5416) and subsequent exposure to 10% hypoxia for 4 weeks (SuHx model). Four weeks after re-exposure to normoxia, nintedanib was administered once daily for 3 weeks. Effects of the treatment were assessed with echocardiography, right heart catheterization, and histological analysis of the heart and lungs. Changes in extracellular matrix production was assessed in human cardiac fibroblasts stimulated with nintedanib. Decreased proliferation with nintedanib was observed in control MVEC, but not in PAH patient derived MVEC. Nintedanib treatment did not affect right ventricular (RV) systolic pressure or total pulmonary resistance index in SuHx rats and had no effects on pulmonary vascular remodelling. However, despite unaltered pressure overload, the right ventricle showed less dilatation and decreased fibrosis, hypertrophy, and collagen type III with nintedanib treatment. This could be explained by less fibronectin production by cardiac fibroblasts exposed to nintedanib. Conclusion Nintedanib inhibits proliferation of pulmonary MVECs from controls, but not from PAH patients. While in rats with experimental PH nintedanib has no effects on the pulmonary vascular pathology, it has favourable effects on RV remodelling.
Biochemical and Biophysical Research Communications | 2018
Robert Szulcek; Christian Bollensdorff; Peter L. Hordijk; Matthias Gabriel
The chemical coupling of growth factors to solid substrates are discussed as an alternative to delivery systems. Utilizing entire proteins for this application is hampered by safety and stability considerations. Instead, growth factor mimicking peptides are of great interest for biomedical applications, such as tissue engineering, due to their purity and stability. The human cathelicidin derived antimicrobial peptide LL37, beside its microbicidal activity, was shown to stimulate endothelial cell growth when used in a soluble form. Here, in a novel approach, spacer mediated immobilization, but not direct conjugation of LL37, to a gold substrate was shown to result in a pronounced mitogenic effect on endothelial cells, comparable to that of soluble vascular endothelial growth factor.
Vascular Pharmacology | 2016
Chris Happé; Robert Szulcek; Norbert F. Voelkel; H.J. Bogaard
Cell Reports | 2018
Lilian Schimmel; Miesje van der Stoel; Carmela Rianna; Anne-Marieke van Stalborch; Aafke de Ligt; Mark Hoogenboezem; Simon Tol; Jos van Rijssel; Robert Szulcek; Harm J. Bogaard; Patrick Hofmann; Reinier Boon; Manfred Radmacher; Vivian de Waard; Stephan Huveneers; Jaap D. van Buul