Robert T. Dauchy
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert T. Dauchy.
Molecular Endocrinology | 2012
Lulu Mao; Robert T. Dauchy; David E. Blask; Lauren M. Slakey; Shulin Xiang; Lin Yuan; Erin M. Dauchy; Bin Shan; George C. Brainard; John P. Hanifin; Tripp Frasch; Tamika Duplessis; Steven M. Hill
Disturbed sleep-wake cycle and circadian rhythmicity are associated with cancer, but the underlying mechanisms are unknown. Employing a tissue-isolated human breast xenograft tumor nude rat model, we observed that glycogen synthase kinase 3β (GSK3β), an enzyme critical in metabolism and cell proliferation/survival, exhibits a circadian rhythm of phosphorylation in human breast tumors. Exposure to light-at-night suppresses the nocturnal pineal melatonin synthesis, disrupting the circadian rhythm of GSK3β phosphorylation. Melatonin activates GSK3β by inhibiting the serine-threonine kinase Akt phosphorylation, inducing β-catenin degradation and inhibiting epithelial-to-mesenchymal transition, a fundamental process underlying cancer metastasis. Thus, chronic circadian disruption by light-at-night via occupational exposure or age-related sleep disturbances may contribute to cancer incidence and the metastatic spread of breast cancer by inhibiting GSK3β activity and driving epithelial-to-mesenchymal transition in breast cancer patients.
Cancer Research | 2005
David E. Blask; George C. Brainard; Robert T. Dauchy; John P. Hanifin; Leslie K. Davidson; Jean A. Krause; Leonard A. Sauer; Moisés A. Rivera-Bermúdez; Margarita L. Dubocovich; Samar A. Jasser; Darin T. Lynch; Mark D. Rollag; Frederick Zalatan
The increased breast cancer risk in female night shift workers has been postulated to result from the suppression of pineal melatonin production by exposure to light at night. Exposure of rats bearing rat hepatomas or human breast cancer xenografts to increasing intensities of white fluorescent light during each 12-hour dark phase (0-345 microW/cm2) resulted in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-hydroxyoctadecadienoic acid. Venous blood samples were collected from healthy, premenopausal female volunteers during either the daytime, nighttime, or nighttime following 90 minutes of ocular bright, white fluorescent light exposure at 580 microW/cm2 (i.e., 2,800 lx). Compared with tumors perfused with daytime-collected melatonin-deficient blood, human breast cancer xenografts and rat hepatomas perfused in situ, with nocturnal, physiologically melatonin-rich blood collected during the night, exhibited markedly suppressed proliferative activity and linoleic acid uptake/metabolism. Tumors perfused with melatonin-deficient blood collected following ocular exposure to light at night exhibited the daytime pattern of high tumor proliferative activity. These results are the first to show that the tumor growth response to exposure to light during darkness is intensity dependent and that the human nocturnal, circadian melatonin signal not only inhibits human breast cancer growth but that this effect is extinguished by short-term ocular exposure to bright, white light at night. These mechanistic studies are the first to provide a rational biological explanation for the increased breast cancer risk in female night shift workers.
Current Topics in Medicinal Chemistry | 2002
David E. Blask; Leonard A. Sauer; Robert T. Dauchy
Melatonin, as a new member of an expanding group of regulatory factors that control cell proliferation and loss, is the only known chronobiotic, hormonal regulator of neoplastic cell growth. At physiological circulating concentrations, this indoleamine is cytostatic and inhibits cancer cell proliferation in vitro via specific cell cycle effects. At pharmacological concentrations, melatonin exhibits cytotoxic activity in cancer cells. At both physiological and pharmacological concentrations, melatonin acts as a differentiating agent in some cancer cells and lowers their invasive and metastatic status through alterations in adhesion molecules and maintenance of gap junctional intercellular communication. In other cancer cell types, melatonin, either alone or in combination with other agents, induces apoptotic cell death. Biochemical and molecular mechanisms of melatonins oncostatic action may include regulation of estrogen receptor expression and transactivation, calcium/calmodulin activity, protein kinase C activity, cytoskeletal architecture and function, intracellular redox status, melatonin receptor-mediated signal transduction cascades, and fatty acid transport and metabolism. A major mechanism mediating melatonins circadian stage-dependent tumor growth inhibitory action is the suppression of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) activity. This occurs via melatonin receptor-mediated blockade of tumor linoleic acid uptake and its conversion to 13-hydroxyoctadecadienoic acid (13-HODE) which normally activates EGFR/MAPK mitogenic signaling. This represents a potentially unifying model for the chronobiological inhibitory regulation of cancer growth by melatonin in the maintenance of the host/cancer balance. It also provides the first biological explanation of melatonin-induced enhancement of the efficacy and reduced toxicity of chemo- and radiotherapy in cancer patients.
Endocrine | 2005
David E. Blask; Robert T. Dauchy; Leonard A. Sauer
Physiological and pharmacological blood concentrations of melatonin inhibit tumorigenesis in a variety of in vivo and in vitro experimental models of neoplasia. Evidence indicates that melatonin’s anticancer effects are exerted via inhibition of cell proliferation and a stimulation of differentiation and apoptosis. A new mechanism by which physiological and pharmacological blood levels of melatonin inhibit cancer growth in vivo is via a melatonin-induced suppression of tumor linoleic acid (LA) uptake and its metabolism to the important mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Melatonin suppresses cAMP formation and inhibits tumor uptake of LA and its metabolism to 13-HODE via a melatonin receptor-mediated mechanism in both tissue-isolated rat hepatoma 7288 CTC and human breast cancer xenografts. It has been postulated that in industrialized societies, light at night, by suppressing melatonin production, poses a new risk for the development of breast cancer and, perhaps, other cancers as well. In support of this hypothesis, light during darkness suppresses nocturnal melatonin production and stimulates the LA metabolism and growth of rat hepatoma and human breast cancer xenografts. Nocturnal dietary supplementation with melatonin, at levels contained in a melatonin-rich diet, inhibits rat hepatoma growth via the mechanisms described above. The nocturnal melatonin signal organizes tumor metabolism and growth within circadian time structure that can be further reinforced by appropriately timed melatonin supplementation. Dietary melatonin supplementation working in concert with the endogenous melatonin signal has the potential to be a new preventive/therapeutic strategy to optimize the host/cancer balance in favor of host survival and quality of life.
Journal of Pineal Research | 2011
David E. Blask; Steven M. Hill; Robert T. Dauchy; Shulin Xiang; Lin Yuan; Tamika Duplessis; Lulu Mao; Erin M. Dauchy; Leonard A. Sauer
Abstract:u2002 This review article discusses recent work on the melatonin‐mediated circadian regulation and integration of molecular, dietary, and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light at night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen‐induced transcriptional activity of the ERα via MT1‐induced activation of Gαi2 signaling and reduction of 3′,5′‐cyclic adenosine monophosphate (cAMP) levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super‐family, enzymes involved in estrogen metabolism, expression/activation of telomerase, and the expression of core clock and clock‐related genes. The anti‐invasive/anti‐metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT1‐mediated suppression of cAMP leading to blockade of linoleic acid uptake and its metabolism to the mitogenic signaling molecule 13‐hydroxyoctadecadienoic acid (13‐HODE). Down‐regulation of 13‐HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN‐induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Breast Cancer Research and Treatment | 2003
David E. Blask; Robert T. Dauchy; Leonard A. Sauer; Jean A. Krause; George C. Brainard
The nocturnal melatonin (MLT) surge is a relevant oncostatic signal for a variety of experimental malignancies. Population studies support the hypothesis that exposure to light at night may represent a new risk factor for breast cancer possibly through the suppression of pineal MLT production and/or circadian disruption. We tested the ability of constant light exposure to suppress MLT production in female nude rats and stimulate the growth of tissue-isolated MCF-7 human breast cancer xenografts via increased tumor linoleic acid (LA) metabolism. Rats maintained on an alternating light/dark cycle (L:D group) exhibited a robust circadian MLT rhythm that was abolished following constant light exposure. During the exposure of animals bearing tissue-isolated human MCF-7 breast cancer xenografts to constant light, the rate of tumor growth markedly increased relative to the L:D group. Tumor LA uptake and its metabolism to the mitogen 13-hydroxyoctadecadienoic acid (13-HODE) were also substantially higher under constant light conditions. This is the first biological evidence for a potential link between constant light exposure and increased human breast oncogenesis involving MLT suppression and stimulation of tumor LA metabolism.
Biochemical Pharmacology | 2001
Leonard A. Sauer; Robert T. Dauchy; David E. Blask
Many nutritional, hormonal, and environmental factors affect carcinogenesis and growth of established tumors in rodents. In some cases, these factors may either enhance or attenuate the neoplastic process. Recent experiments performed in our laboratory using tissue-isolated rat hepatoma 7288CTC in vivo or during perfusion in situ have demonstrated new interactions among four of these factors. Two agents, dietary linoleic acid (C18:2n6) and light at night, enhanced tumor growth, and two others, melatonin and n3 fatty acids, attenuated growth. Linoleic acid stimulated tumor growth because it is converted by hepatoma 7288CTC to the mitogen, 13-hydroxyoctadecadienoic acid (13-HODE). Melatonin, the neurohormone synthesized and secreted at night by the pineal gland, and dietary n3 fatty acids are potent antitumor agents. Both inhibited tumor linoleic acid uptake and 13-HODE formation. Artificial light, specifically light at night, increased tumor growth because it suppressed melatonin synthesis and enhanced 13-HODE formation. Melatonin and n3 fatty acids acted via similar or identical G(i) protein-coupled signal transduction pathways, except that melatonin receptors and putative n3 fatty acid receptors were used. The results link the four factors in a common mechanism and provide new insights into the roles of dietary n6 and n3 polyunsaturated fatty acid intake, light at night, and melatonin in cancer prevention in humans.
Endocrine-related Cancer | 2015
Steven M. Hill; Victoria P. Belancio; Robert T. Dauchy; Shulin Xiang; Samantha Brimer; Lulu Mao; Adam Hauch; Peter W. Lundberg; Whitney Summers; Lin Yuan; Tripp Frasch; David E. Blask
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.
Cancer Letters | 1999
Robert T. Dauchy; David E. Blask; Leonard A. Sauer; George C. Brainard; Jean A. Krause
Tumor linoleic acid uptake and metabolism, and growth are suppressed by melatonin, the synthesis of which is inhibited by light. Linoleic acid, via its mitogenic metabolite 13-hydroxyoctadecadienoic acid (13-HODE) is an important growth stimulant of rat hepatoma 7288CTC. Here we compared the effects of an alternating light:dark cycle (12L:12D), dim light (0.25 lux) present during the dark phase of a diurnal light cycle, and constant light on growth and fatty acid metabolism in hepatoma 7288CTC. Our results show that dim light suppressed melatonin release by the pineal gland, increased tumor linoleic acid uptake and 13-HODE production, and promoted tumor growth as effectively as did constant light.
Cancer Research | 2014
Robert T. Dauchy; Shulin Xiang; Lulu Mao; Samantha Brimer; Melissa A. Wren; Lin Yuan; Muralidharan Anbalagan; Adam Hauch; Tripp Frasch; Brian G. Rowan; David E. Blask; Steven M. Hill
Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen.