Robert T. Wheeler
University of Maine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert T. Wheeler.
Nature | 2008
Jonathan B. Johnnidis; Marian H. Harris; Robert T. Wheeler; Sandra Stehling-Sun; Michael H. Lam; Oktay Kirak; Thijn R. Brummelkamp; Mark D. Fleming; Fernando D. Camargo
MicroRNAs are abundant in animal genomes and have been predicted to have important roles in a broad range of gene expression programmes. Despite this prominence, there is a dearth of functional knowledge regarding individual mammalian microRNAs. Using a loss-of-function allele in mice, we report here that the myeloid-specific microRNA-223 (miR-223) negatively regulates progenitor proliferation and granulocyte differentiation and activation. miR-223 (also called Mirn223) mutant mice have an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte progenitors. We show that Mef2c, a transcription factor that promotes myeloid progenitor proliferation, is a target of miR-223, and that genetic ablation of Mef2c suppresses progenitor expansion and corrects the neutrophilic phenotype in miR-223 null mice. In addition, granulocytes lacking miR-223 are hypermature, hypersensitive to activating stimuli and display increased fungicidal activity. As a consequence of this neutrophil hyperactivity, miR-223 mutant mice spontaneously develop inflammatory lung pathology and exhibit exaggerated tissue destruction after endotoxin challenge. Our data support a model in which miR-223 acts as a fine-tuner of granulocyte production and the inflammatory response.
PLOS Pathogens | 2008
Robert T. Wheeler; Diana Kombe; Sudeep D. Agarwala; Gerald R. Fink
Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall β-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 β-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in β-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in β-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose β-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates β-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host–pathogen interaction in vivo and suggest new avenues for drug development.
Molecular Cell | 1999
Robert T. Wheeler; Lucy Shapiro
The bacterium C. crescentus coordinates cellular differentiation and cell cycle progression via a network of signal transduction proteins. Here, we demonstrate that the antagonistic DivJ and PleC histidine kinases that regulate polar differentiation are differentially localized as a function of the cell cycle. The DivJ kinase localizes to the stalked pole in response to a signal at the G1-to-S transition, while the PleC kinase is localized to the flagellar pole in swarmer and predivisional cells but is dispersed throughout the cell in the stalked cell. PleC, which is required for DivJ localization, may provide the cue at the G1-to-S transition that directs the polar positioning of DivJ. The dynamic positioning of signal transduction proteins may contribute to the regulation of polar differentiation at specific times during the bacterial cell cycle.
Nature | 2016
David L. Moyes; Duncan Wilson; Jonathan P. Richardson; Selene Mogavero; Shirley X. Tang; Julia Wernecke; Sarah Höfs; Remi L. Gratacap; Jon Robbins; Manohursingh Runglall; Celia Murciano; Mariana Blagojevic; Selvam Thavaraj; Toni M. Förster; Betty Hebecker; Lydia Kasper; Gema Vizcay; Simona I. Iancu; Nessim Kichik; Antje Häder; Oliver Kurzai; Ting Luo; Thomas Krüger; Olaf Kniemeyer; Ernesto Cota; Oliver Bader; Robert T. Wheeler; Thomas Gutsmann; Bernhard Hube; Julian R. Naglik
Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name ‘Candidalysin’ for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Joel Moxley; Michael C. Jewett; Maciek R. Antoniewicz; Silas G. Villas-Bôas; Hal S. Alper; Robert T. Wheeler; Lily V. Tong; Alan G. Hinnebusch; Trey Ideker; Jens Nielsen; Gregory Stephanopoulos
Genome sequencing dramatically increased our ability to understand cellular response to perturbation. Integrating system-wide measurements such as gene expression with networks of protein protein interactions and transcription factor binding revealed critical insights into cellular behavior. However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate mRNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental (13)C-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator Gcn4p. Although mRNA expression alone did not directly predict metabolic response, this correlation improved through incorporating a network-based model of amino acid biosynthesis (from r = 0.07 to 0.80 for mRNA-flux agreement). The model provides evidence of general biological principles: rewiring of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow-on transcriptional regulators that were experimentally validated with additional (13)C-based flux measurements. As a first step in linking metabolic control and genetic regulatory networks, this model underscores the importance of integrating diverse data types in large-scale cellular models. We anticipate that an integrated approach focusing on metabolic measurements will facilitate construction of more realistic models of cellular regulation for understanding diseases and constructing strains for industrial applications.Genome sequencing dramatically increased our ability to understand cellular response to perturbation. Integrating system-wide measurements such as gene expression with networks of protein–protein interactions and transcription factor binding revealed critical insights into cellular behavior. However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate mRNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental 13C-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator Gcn4p. Although mRNA expression alone did not directly predict metabolic response, this correlation improved through incorporating a network-based model of amino acid biosynthesis (from r = 0.07 to 0.80 for mRNA-flux agreement). The model provides evidence of general biological principles: rewiring of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow-on transcriptional regulators that were experimentally validated with additional 13C-based flux measurements. As a first step in linking metabolic control and genetic regulatory networks, this model underscores the importance of integrating diverse data types in large-scale cellular models. We anticipate that an integrated approach focusing on metabolic measurements will facilitate construction of more realistic models of cellular regulation for understanding diseases and constructing strains for industrial applications.
Journal of Clinical Investigation | 2013
Michail S. Lionakis; Muthulekha Swamydas; Brett G. Fischer; Theo S. Plantinga; Melissa D. Johnson; Martin Jaeger; Nathaniel M. Green; Andrius Masedunskas; Roberto Weigert; Constantinos M. Mikelis; Wuzhou Wan; Chyi Chia Richard Lee; Jean K. Lim; Aymeric Rivollier; John C. Yang; Greg M. Laird; Robert T. Wheeler; Barbara D. Alexander; John R. Perfect; Ji Liang Gao; Bart Jan Kullberg; Mihai G. Netea; Philip M. Murphy
Systemic Candida albicans infection causes high morbidity and mortality and is associated with neutropenia; however, the roles of other innate immune cells in pathogenesis are poorly defined. Here, using a mouse model of systemic candidiasis, we found that resident macrophages accumulated in the kidney, the main target organ of infection, and formed direct contacts with the fungus in vivo mainly within the first few hours after infection. Macrophage accumulation and contact with Candida were both markedly reduced in mice lacking chemokine receptor CX3CR1, which was found almost exclusively on resident macrophages in uninfected kidneys. Infected Cx3cr1-/- mice uniformly succumbed to Candida-induced renal failure, but exhibited clearance of the fungus in all other organs tested. Renal macrophage deficiency in infected Cx3cr1-/- mice was due to reduced macrophage survival, not impaired proliferation, trafficking, or differentiation. In humans, the dysfunctional CX3CR1 allele CX3CR1-M280 was associated with increased risk of systemic candidiasis. Together, these data indicate that CX3CR1-mediated renal resident macrophage survival is a critical innate mechanism of early fungal control that influences host survival in systemic candidiasis.
Eukaryotic Cell | 2011
Zachary R. Newman; Robert T. Wheeler
ABSTRACT Candida albicans is a human commensal and a clinically important fungal pathogen that grows in both yeast and hyphal forms during human infection. Although Candida can cause cutaneous and mucosal disease, systemic infections cause the greatest mortality in hospitals. Candidemia occurs primarily in immunocompromised patients, for whom the innate immune system plays a paramount role in immunity. We have developed a novel transparent vertebrate model of candidemia to probe the molecular nature of Candida-innate immune system interactions in an intact host. Our zebrafish infection model results in a lethal disseminated disease that shares important traits with disseminated candidiasis in mammals, including dimorphic fungal growth, dependence on hyphal growth for virulence, and dependence on the phagocyte NADPH oxidase for immunity. Dual imaging of fluorescently marked immune cells and fungi revealed that phagocytosed yeast cells can remain viable and even divide within macrophages without germinating. Similarly, although we observed apparently killed yeast cells within neutrophils, most yeast cells within these innate immune cells were viable. Exploiting this model, we combined intravital imaging with gene knockdown to show for the first time that NADPH oxidase is required for regulation of C. albicans filamentation in vivo. The transparent and easily manipulated larval zebrafish model promises to provide a unique tool for dissecting the molecular basis of phagocyte NADPH oxidase-mediated limitation of filamentous growth in vivo.
PLOS Pathogens | 2013
Mohlopheni J. Marakalala; Simon Vautier; Joanna Potrykus; Louise A. Walker; Kelly M. Shepardson; Alex Hopke; Héctor M. Mora-Montes; Ann M. Kerrigan; Mihai G. Netea; Graeme I. Murray; Donna M. MacCallum; Robert T. Wheeler; Carol A. Munro; Neil A. R. Gow; Robert A. Cramer; Alistair J. P. Brown; Gordon D. Brown
The β-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous infections as well as life-threatening invasive diseases. Here, using in vivo models of infection, we show that the requirement for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes apparent during infection and cannot be recapitulated in vitro. Transcript analysis revealed that this differential requirement for Dectin-1 is due to variable adaptation of C. albicans strains in vivo, and that this results in substantial differences in the composition and nature of their cell walls. In particular, we established that differences in the levels of cell-wall chitin influence the role of Dectin-1, and that these effects can be modulated by antifungal drug treatment. Our results therefore provide substantial new insights into the interaction between C. albicans and the immune system and have significant implications for our understanding of susceptibility and treatment of human infections with this pathogen.
PLOS Pathogens | 2012
David M. Tobin; Robin C. May; Robert T. Wheeler
1 Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis and Center for AIDS Research, Duke University, Durham, North Carolina, United States of America, 2 Molecular Pathology and School of Biosciences, University of Birmingham, Birmingham, United Kingdom, 3 Department of Molecular and Biomedical Sciences and Graduate School of Biomedical Sciences, University of Maine, Orono, Maine, United States of America
PLOS Pathogens | 2013
Remi L. Gratacap; Sarah E. Barker; Zachary R. Newman; Ashley Norum; Robert T. Wheeler
Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis.