Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Thomas Jubin is active.

Publication


Featured researches published by Robert Thomas Jubin.


Science and Technology of Nuclear Installations | 2013

Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

Nick Soelberg; Troy G. Garn; Mitchell Greenhalgh; Jack D. Law; Robert Thomas Jubin; Denis M. Strachan; Praveen K. Thallapally

The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.


Archive | 2012

Fuel age impacts on gaseous fission product capture during separations

Robert Thomas Jubin; Nicolas R. Soelberg; Denis M. Strachan; G. Ilas

As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have relatively short half-lives, 12.3 y and 10.7 y, respectively, the dose decreases with the time from when the fuel is removed from the reactor to the time it is processed (herein “fuel age”). One possible strategy for limiting the discharges of these short halflife radionuclides is to allow the fuel to age to take advantage of radioactive decay. Therefore, the doses and required DFs are calculated as a function of fuel age. Here we calculate, given the above constraints and assumptions, the minimum ages for each fuel type that would not require additional effluent controls for the shorter half-life volatile radionuclides based on dose considerations. With respect to 129I doses, we find that the highest dose is calculated with iodine as a fine particulate. The dose scales as the fraction of the total 129I that is particulate. Therefore, we assume for all of our calculations that 100% of the 129I is particulate and allow the user of the results given here to scale our calculated doses to their needs. To summarize the data given in the body and appendices of this report, we find that the principal isotopes of concern are 3H and 129I, the latter requiring the highest DFs. The maximum DF value for 129I is 8000 for the illustrated cases. The required DF for 3H could be as high as 720, depending on the age of the fuel processed. The DF for 85Kr could be up to ~60, depending on fuel age. The DF for 14C is in many cases 1 (no treatment required) but could be as high as 30. The DFs required are within the range of DFs that are reported for the capture technologies that are available for the volatile radionuclides. Achieving the required 129I and 3H DFs is more challenging. Variations in stack design and other design factors may also significantly impact the DF requirements.


Nuclear Technology | 2017

Analysis of Krypton-85 Legacy Waste Forms: Part I

Stephanie H. Bruffey; Robert Thomas Jubin

Abstract In 2010, the Idaho National Laboratory was in the process of removing legacy materials from one of their hot cells. As part of this clean-out effort, five metal capsules and some loose zeolite material were identified as test specimens produced in the late 1970s as part of research and development (R&D) conducted under the Airborne Waste Management Program. This specific R&D effort examined the encapsulation of 85Kr within a collapsed zeolite structure for use as a potential waste form for long-term storage. These reclaimed capsules and loose material presented a unique opportunity to study a potential 85Kr waste form after three half-lives have elapsed. Of the five capsules, the walls of two had been cut or breached during previous experiments. The aim of this study was to produce mounted samples from the two breached samples that could be handled with minimal shielding, assess the physical condition and chemical composition of the capsule walls for each breached sample, and determine if any loss of capsule wall integrity was directly attributable to rubidium, the decay product of 85Kr. The sectioning and mounting of the breached capsules was successfully completed. The capsule wall of these 85Kr legacy waste form capsules was examined by optical microscopy and by scanning electron microscopy and energy-dispersive spectroscopy. Substantial corrosion was observed throughout each capsule wall. The bulk of the capsule wall was identified as carbon steel, while the weld material used in capsule manufacture and/or sealing was identified as stainless steel. A notable observation was that the material used for Kr encapsulation was found adhered to the walls of each capsule and had a chemical composition consistent with zeolite minerals. The results of studies on the retention of Kr by the encapsulation material will be discussed in a subsequent paper. Three legacy capsules remain in storage at Oak Ridge National Laboratory and may not have been breached. These represent an exciting opportunity for continued 85Kr waste form studies and will provide more indication as to whether the corrosion observed in Capsules 2 and 5 is attributable to the breach of the capsule, to Rb-induced corrosion, or to another cause.


Archive | 2016

Performance Criteria for Capture and/or Immobilization Technologies - Milestone Report

Stephanie H. Bruffey; Robert Thomas Jubin; Barry B. Spencer; Nick Soelberg; Brian J. Riley

The capture and subsequent immobilization of the four regulated volatile radionuclides (3H, 14C, 85Kr, and 129I) from the off-gas streams of a used nuclear fuel (UNF) reprocessing facility has been a topic of substantial research interest for the US Department of Energy and its international colleagues. Removal of some or all of these radionuclides (e.g., based upon fuel burnup, fuel type, cooling time) from the plant effluent streams prior to discharge to the environment is required to meet regulations set forth by the US Environmental Protection Agency. Upon removal, the radionuclide, as well as associated sorbents that cannot be cost-effectively regenerated, is destined for conversion to a waste form. Research in separation and capture methodologies has included a wide range of technologies, including liquid caustic scrubbing systems, solid adsorbents, and cryogenic distillation. The studies of waste forms have been correspondingly diverse. In considering the technologies available for future development and implementation of both sorbents and waste forms, it is necessary to identify benchmark measures of performance to evaluate objectively each sorbent system or waste form.


Archive | 2015

Initial Effects of NOx on Idodine and Methyl Iodine Loading of AgZ and Aerogels

Stephanie H. Bruffey; Robert Thomas Jubin

This initial evaluation provides insight into the effect of NO on the adsorption of both I2 and CH3I onto reduced silver-exchanged mordenite (Ag0Z). It was determined that adsorption of CH3I onto Ag0Z occurs at approximately 50% of the rate of I2 adsorption onto Ag0Z, although total iodine capacities are comparable. Addition of 1% NO to the simulated off-gas stream results in very similar loading behaviors and iodine capacities for both iodine species. This is most likely an effect of CH3I oxidation to I2 by NO prior to contact with the sorbent bed. Completion of tests including NO2 in the simulated off-gas stream was delayed due to vendor NO2 production schedules. A statistically designed test matrix is partially completed, and upon conclusion of the suggested experiments, the effects of temperature, NO, NO2, and water vapor on the sorption of CH3I and I2 onto Ag0Z will be able to be statistically resolved. This work represents progress towards that aim.


Archive | 2015

Milestone Report - M3FT-15OR03120215 - Recommend HIP Conditions for AgZ

Stephanie H. Bruffey; Robert Thomas Jubin

The purpose of this study was to continue research to determine if HIPing could directly convert I-Ag0Z into a suitable waste form. Fiscal year (FY) 2015 work completed studies of Phase IIA, IIB, and IIC samples. Product consistency testing (PCT) of Phase IIA samples resulted in iodine release below detection limit for six of twelve samples. This is promising and indicates that a durable waste form may be produced through HIPing even if transformation of the zeolite to a distinct mineral phase does not occur. From PCT results of Phase IIA samples, it was determined that future pressing should be conducted at a temperature of 900°C. Phase IIC testing continued production of samples to examine the effects of multiple source materials, compositional variations, and an expanded temperature range. The density of each sample was determined and x-ray diffraction (XRD) patterns were obtained. In all cases, there was nothing in the XRD analyses to indicate the creation of any AgI-containing silicon phase; the samples were found to be largely amorphous.


Archive | 2014

Milestone report - M4FT-14OR0302102b - Evaluation of Tritium Content and Release from Surry-2 Fuel Cladding

Sharon M Robinson; Marc Rhea Chattin; Joseph Giaquinto; Robert Thomas Jubin

To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified.To gain a better understanding of how tritium in cladding will behave during processing, scoping tests are being performed to determine the tritium content in the cladding pre- and post-tritium pretreatment. A sample of Surry-2 pressurized water reactor (PWR) cladding was heated to 1100–1200°C to oxidize the zirconium and release all of the tritium in the cladding sample. The tritium content was measured to be ~240 µCi/g. Cladding samples were heated to 500oC, which is within the temperature range (480 - 600oC) expected for standard air tritium pretreatment systems, and to a slightly higher temperature (700oC) to determine the impact of tritium pretreatment on tritium release from the cladding. Heating at 500°C for 24 hr removes ~0.2% of the tritium from the cladding, and heating at 700°C for 24 hr removes ~9%. Thus, a significant fraction of the tritium remains bound in the cladding and must be considered in operations involving cladding recycle.


Archive | 2013

Milestone Report - M4FT-14OR0312022 - Co-absorption studies - Design system complete/test plan complete

Stephanie H. Bruffey; Barry B. Spencer; Robert Thomas Jubin

The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.


Archive | 2011

FY 2007 LDRD Director's R&D Progress SummaryProposal Title: Developing a Science Base for Fuel Reprocessing Separations in the Global Nuclear Energy Program

Valmor F. de Almeida; Costas Tsouris; Joseph F. Birdwell; Ed F D'Azevedo; Robert Thomas Jubin; David W. DePaoli; Bruce A. Moyer

This work is aimed at developing an experimentally validated computational capability for understanding the complex processes governing the performance of solvent extraction devices used for separations in nuclear fuel reprocessing. These applications pose a grand challenge due to the combination of complicating factors in a three-dimensional, turbulent, reactive, multicomponent, multiphase/interface fluid flow system. The currently limited process simulation and scale-up capabilities provides uncertainty in the ability to select and design the separations technology for the demonstration plan of the Global Nuclear Energy Partnership (GNEP) program. We anticipate the development of science-based models for technology development and design. This project will position ORNL to address the emerging opportunity by creating an expandable process model validated experimentally. This project has three major thrusts, namely, a prototype experimental station, a continuum modeling and simulation effort, and molecular modeling and kinetics support. Excellent progress has been made in corresponding activities in this first year in: (1) defining, assembling, and operating a relevant prototype system for model validation; (2) establishing a mathematical model for fluid flow and transport; (3) deploying sub-scale molecular modeling.


Archive | 1978

Cermet high level waste forms

W Scott Aaron; Emory D Collins; Guillermo D DelCul; Robert Thomas Jubin; Raymond James Vedder

Collaboration


Dive into the Robert Thomas Jubin's collaboration.

Top Co-Authors

Avatar

Stephanie H. Bruffey

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Barry B. Spencer

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bradley D Patton

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Emory D Collins

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Guillermo D DelCul

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jacob A. Jordan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Denis M. Strachan

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sharon M Robinson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dan W Ramey

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nick Soelberg

Idaho National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge