Robert VanBuren
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert VanBuren.
Science | 2014
Lorenzo Carretero-Paulet; Alexis Dereeper; Gaëtan Droc; Romain Guyot; Marco Pietrella; Chunfang Zheng; Adriana Alberti; François Anthony; Giuseppe Aprea; Jean-Marc Aury; Pascal Bento; Maria Bernard; Stéphanie Bocs; Claudine Campa; Alberto Cenci; Marie Christine Combes; Dominique Crouzillat; Corinne Da Silva; Loretta Daddiego; Fabien De Bellis; Stéphane Dussert; Olivier Garsmeur; Thomas Gayraud; Valentin Guignon; Katharina Jahn; Véronique Jamilloux; Thierry Joët; Karine Labadie; Tianying Lan; Julie Leclercq
Coffee, tea, and chocolate converge Caffeine has evolved multiple times among plant species, but no one knows whether these events involved similar genes. Denoeud et al. sequenced the Coffea canephora (coffee) genome and identified a conserved gene order (see the Perspective by Zamir). Although this species underwent fewer genome duplications than related species, the relevant caffeine genes experienced tandem duplications that expanded their numbers within this species. Scientists have seen similar but independent expansions in distantly related species of tea and cacao, suggesting that caffeine might have played an adaptive role in coffee evolution. Science, this issue p. 1181; see also p. 1124 The genetic origins of coffee’s constituents reveal intriguing links to cacao and tea. Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jianping Wang; Jong Kuk Na; Qingyi Yu; Andrea R. Gschwend; Jennifer Han; Fanchang Zeng; Rishi Aryal; Robert VanBuren; Jan E. Murray; Wenli Zhang; Rafael Navajas-Pérez; F. Alex Feltus; Cornelia Lemke; Eric J. Tong; Cuixia Chen; Ching Man Wai; Ratnesh Singh; Ming Li Wang; Xiang Jia Min; Maqsudul Alam; Deborah Charlesworth; Paul H. Moore; Jiming Jiang; Andrew H. Paterson; Ray Ming
Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.
Nature Genetics | 2015
Ray Ming; Robert VanBuren; Ching Man Wai; Haibao Tang; Michael C. Schatz; John E. Bowers; Eric Lyons; Ming Li Wang; Jung Chen; Eric Biggers; Jisen Zhang; Lixian Huang; Lingmao Zhang; Wenjing Miao; Jian Zhang; Zhangyao Ye; Chenyong Miao; Zhicong Lin; Hao Wang; Hongye Zhou; Won Cheol Yim; Henry D. Priest; Chunfang Zheng; Margaret R. Woodhouse; Patrick P. Edger; Romain Guyot; Hao Bo Guo; Hong Guo; Guangyong Zheng; Ratnesh Singh
Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.
Nature | 2015
Robert VanBuren; Doug Bryant; Patrick P. Edger; Haibao Tang; Diane Burgess; Dinakar Challabathula; Kristi Spittle; Richard Hall; Jenny Gu; Eric Lyons; Michael Freeling; Dorothea Bartels; Boudewijn ten Hallers; Alex Hastie; Todd P. Michael; Todd C. Mockler
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
Current Opinion in Plant Biology | 2015
Todd P. Michael; Robert VanBuren
The availability of plant reference genomes has ushered in a new era of crop genomics. More than 100 plant genomes have been sequenced since 2000, 63% of which are crop species. These genome sequences provide insight into architecture, evolution and novel aspects of crop genomes such as the retention of key agronomic traits after whole genome duplication events. Some crops have very large, polyploid, repeat-rich genomes, which require innovative strategies for sequencing, assembly and analysis. Even low quality reference genomes have the potential to improve crop germplasm through genome-wide molecular markers, which decrease expensive phenotyping and breeding cycles. The next stage of plant genomics will require draft genome refinement, building resources for crop wild relatives, resequencing broad diversity panels, and plant ENCODE projects to better understand the complexities of these highly diverse genomes.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Andrea R. Gschwend; Qingyi Yu; Eric J. Tong; Fanchang Zeng; Jennifer Han; Robert VanBuren; Rishi Aryal; Deborah Charlesworth; Paul H. Moore; Andrew H. Paterson; Ray Ming
X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcript-encoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Yh chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X.
DNA Research | 2015
Qiong Zhang; Chunyan Liu; Yifei Liu; Robert VanBuren; Xiaohong Yao; Caihong Zhong; Hongwen Huang
Kiwifruit (Actinidia chinensis Planchon) is an important specialty fruit crop that suffers from narrow genetic diversity stemming from recent global commercialization and limited cultivar improvement. Here, we present high-density RAD-seq-based genetic maps using an interspecific F1 cross between Actinidia rufa ‘MT570001’ and A. chinensis ‘Guihai No4’. The A. rufa (maternal) map consists of 2,426 single-nucleotide polymorphism (SNP) markers with a total length of 2,651 cM in 29 linkage groups (LGs) corresponding to the 29 chromosomes. The A. chinensis (paternal) map consists of 4,214 SNP markers over 3,142 cM in 29 LGs. Using these maps, we were able to anchor an additional 440 scaffolds from the kiwifruit draft genome assembly. Kiwifruit is functionally dioecious, which presents unique challenges for breeding and production. Three sex-specific simple sequence repeats (SSR) markers can be used to accurately sex type male and female kiwifruit in breeding programmes. The sex-determination region (SDR) in kiwifruit was narrowed to a 1-Mb subtelomeric region on chromosome 25. Localizing the SDR will expedite the discovery of genes controlling carpel abortion in males and pollen sterility in females.
BMC Genomics | 2012
Mei Yang; Yanni Han; Robert VanBuren; Ray Ming; Liming Xu; Yuepeng Han; Yanling Liu
BackgroundThe genus Nelumbo Adans. comprises two living species, N. nucifera Gaertan. (Asian lotus) and N. lutea Pers. (American lotus). A genetic linkage map is an essential resource for plant genetic studies and crop improvement but has not been generated for Nelumbo. We aimed to develop genomic simple sequence repeat (SSR) markers from the genome sequence and construct two genetic maps for Nelumbo to assist genome assembly and integration of a genetic map with the genome sequence.ResultsA total of 86,089 SSR motifs were identified from the genome sequences. Di- and tri-nucleotide repeat motifs were the most abundant, and accounted for 60.73% and 31.66% of all SSRs, respectively. AG/GA repeats constituted 51.17% of dinucleotide repeat motifs, followed by AT/TA (44.29%). Of 500 SSR primers tested, 386 (77.20%) produced scorable alleles with an average of 2.59 per primer, and 185 (37.00%) showed polymorphism among two parental genotypes, N. nucifera ‘Chinese Antique’ and N. lutea ‘AL1’, and six progenies of their F1 population. The normally segregating markers, which comprised 268 newly developed SSRs, 37 previously published SSRs and 53 sequence-related amplified polymorphism markers, were used for genetic map construction. The map for Asian lotus was 365.67 cM with 47 markers distributed in seven linkage groups. The map for American lotus was 524.51 cM, and contained 177 markers distributed in 11 genetic linkage groups. The number of markers per linkage group ranged from three to 34 with an average genetic distance of 3.97 cM between adjacent markers. Moreover, 171 SSR markers contained in linkage groups were anchored to 97 genomic DNA sequence contigs of ‘Chinese Antique’. The 97 contigs were merged into 60 scaffolds.ConclusionGenetic mapping of SSR markers derived from sequenced contigs in Nelumbo enabled the associated contigs to be anchored in the linkage map and facilitated assembly of the genome sequences of ‘Chinese Antique’. The present study reports the first construction of genetic linkage maps for Nelumbo, which can serve as reference linkage maps to accelerate characterization germplasm, genetic mapping for traits of economic interest, and molecular breeding with marker-assisted selection.
Theoretical and Applied Genetics | 2015
Jill M. Bushakra; Douglas W. Bryant; Michael Dossett; Kelly J. Vining; Robert VanBuren; Barbara S. Gilmore; Jungmin Lee; Todd C. Mockler; Chad E. Finn; Nahla V. Bassil
Key messageWe have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance.AbstractBlack raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3–4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.
Gastrointestinal Endoscopy | 2013
Robert VanBuren; Ray Ming
From their inception, Y chromosomes in plants and animals are subjected to the powerful effects of Müller’s ratchet, a process spurred by suppression of recombination that results in a rapid accumulation of mutations and repetitive elements. These mutations eventually lead to gene loss and degeneration of the Y chromosome. Y chromosomes in mammals are ancient, whereas most sex chromosomes in plants and many in insects and fish evolved recently. Sex type in papaya is controlled by a pair of nascent sex chromosomes that evolved around 7 million years ago. The papaya X and Yh were recently sequenced, providing valuable insight into the early stages of sex chromosome evolution. Here we discuss the fruits of this work with a focus on the repeat accumulation, gene trafficking and promiscuous DNA sequences found in the slowly degenerating Yh chromosome of papaya.