Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Visse is active.

Publication


Featured researches published by Robert Visse.


Circulation Research | 2003

Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry

Robert Visse; Hideaki Nagase

Abstract— Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases play a central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. Currently 23 MMP genes have been identified in humans, and most are multidomain proteins. This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.


The EMBO Journal | 2004

Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis.

Linda Chung; Deendayal Dinakarpandian; Naoto Yoshida; Janelle L. Lauer-Fields; Gregg B. Fields; Robert Visse; Hideaki Nagase

Breakdown of triple‐helical interstitial collagens is essential in embryonic development, organ morphogenesis and tissue remodelling and repair. Aberrant collagenolysis may result in diseases such as arthritis, cancer, atherosclerosis, aneurysm and fibrosis. In vertebrates, it is initiated by collagenases belonging to the matrix metalloproteinase (MMP) family. The three‐dimensional structure of a prototypic collagenase, MMP‐1, indicates that the substrate‐binding site of the enzyme is too narrow to accommodate triple‐helical collagen. Here we report that collagenases bind and locally unwind the triple‐helical structure before hydrolyzing the peptide bonds. Mutation of the catalytically essential residue Glu200 of MMP‐1 to Ala resulted in a catalytically inactive enzyme, but in its presence noncollagenolytic proteinases digested collagen into typical 3/4 and 1/4 fragments, indicating that the MMP‐1(E200A) mutant unwinds the triple‐helical collagen. The study also shows that MMP‐1 preferentially interacts with the α2(I) chain of type I collagen and cleaves the three α chains in succession. Our results throw light on the basic mechanisms that control a wide range of biological and pathological processes associated with tissue remodelling.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1.

Szymon W. Manka; Federico Carafoli; Robert Visse; Dominique Bihan; Nicolas Raynal; Richard W. Farndale; Gillian Murphy; Jan J. Enghild; Erhard Hohenester; Hideaki Nagase

Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å–long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.


Journal of Biological Chemistry | 2006

The roles of substrate thermal stability and P2 and P1' subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity.

Dmitriy Minond; Janelle L. Lauer-Fields; Mare Cudic; Christopher M. Overall; Duanqing Pei; Keith Brew; Robert Visse; Hideaki Nagase; Gregg B. Fields

The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Δ279–523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Δ444–707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr210 functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.


Journal of Biological Chemistry | 2010

Molecular mechanism of type I collagen homotrimer resistance to mammalian collagenases.

Sejin Han; Elena Makareeva; Natalia Kuznetsova; Angela M. DeRidder; Mary B. Sutter; Wolfgang Losert; Charlotte L. Phillips; Robert Visse; Hideaki Nagase; Sergey Leikin

Type I collagen cleavage is crucial for tissue remodeling, but its homotrimeric isoform is resistant to all collagenases. The homotrimers occur in fetal tissues, fibrosis, and cancer, where their collagenase resistance may play an important physiological role. To understand the mechanism of this resistance, we studied interactions of α1(I)3 homotrimers and normal α1(I)2α2(I) heterotrimers with fibroblast collagenase (MMP-1). Similar MMP-1 binding to the two isoforms and similar cleavage efficiency of unwound α1(I) and α2(I) chains suggested increased stability and less efficient unwinding of the homotrimer triple helix at the collagenase cleavage site. The unwinding, necessary for placing individual chains inside the catalytic cleft of the enzyme, was the rate-limiting cleavage step for both collagen isoforms. Comparative analysis of the homo- and heterotrimer cleavage kinetics revealed that MMP-1 binding promotes stochastic helix unwinding, resolving the controversy between different models of collagenase action.


Cancer Research | 2010

Carcinomas Contain a Matrix Metalloproteinase–Resistant Isoform of Type I Collagen Exerting Selective Support to Invasion

Elena Makareeva; Sejin Han; Juan Carlos Vera; Dan L. Sackett; Kenn Holmbeck; Charlotte L. Phillips; Robert Visse; Hideaki Nagase; Sergey Leikin

Collagen fibers affect metastasis in two opposing ways, by supporting invasive cells but also by generating a barrier to invasion. We hypothesized that these functions might be performed by different isoforms of type I collagen. Carcinomas are reported to contain alpha1(I)(3) homotrimers, a type I collagen isoform normally not present in healthy tissues, but the role of the homotrimers in cancer pathophysiology is unclear. In this study, we found that these homotrimers were resistant to all collagenolytic matrix metalloproteinases (MMP). MMPs are massively produced and used by cancer cells and cancer-associated fibroblasts for degrading stromal collagen at the leading edge of tumor invasion. The MMP-resistant homotrimers were produced by all invasive cancer cell lines tested, both in culture and in tumor xenografts, but they were not produced by cancer-associated fibroblasts, thereby comprising a specialized fraction of tumor collagen. We observed the homotrimer fibers to be resistant to pericellular degradation, even upon stimulation of the cells with proinflammatory cytokines. Furthermore, we confirmed an enhanced proliferation and migration of invasive cancer cells on the surface of homotrimeric versus normal (heterotrimeric) type I collagen fibers. In summary, our findings suggest that invasive cancer cells may use homotrimers for building MMP-resistant invasion paths, supporting local proliferation and directed migration of the cells whereas surrounding normal stromal collagens are cleaved. Because the homotrimers are universally secreted by cancer cells and deposited as insoluble, MMP-resistant fibers, they offer an appealing target for cancer diagnostics and therapy.


Journal of Biological Chemistry | 2012

Defining Requirements for Collagenase Cleavage in Collagen Type III Using a Bacterial Collagen System

Zhuoxin Yu; Robert Visse; Masayori Inouye; Hideaki Nagase; Barbara Brodsky

Background: Structural requirements of triple-helical collagen for collagenolysis are not fully understood. Results: Recombinant bacterial collagens with human collagen III sequence insertions defined the minimum sequence for cleavage by human collagenases. Conclusion: Susceptibility of bacterial-human collagen chimeras to collagenases mimicked that of human collagen III. Significance: This recombinant system is useful to investigate biological functions of collagen segments in a triple-helical context. Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11′). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11′) of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.


Journal of Medicinal Chemistry | 2009

N-O-isopropyl sulfonamido-based hydroxamates: design, synthesis and biological evaluation of selective matrix metalloproteinase-13 inhibitors as potential therapeutic agents for osteoarthritis.

Elisa Nuti; F Casalini; Stanislava Ivanova Avramova; Salvatore Santamaria; Giovanni Cercignani; Luciana Marinelli; V. La Pietra; Ettore Novellino; Elisabetta Orlandini; Susanna Nencetti; Tiziano Tuccinardi; A Martinelli; Ngee Han Lim; Robert Visse; Hideaki Nagase; Armando Rossello

Matrix metalloproteinase-13 (MMP-13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis (OA). For this reason, MMP-13 synthetic inhibitors are being sought as potential therapeutic agents to prevent cartilage degradation and to halt the progression of OA. Herein, we report the synthesis and in vitro evaluation of a new series of selective MMP-13 inhibitors possessing an arylsulfonamidic scaffold. Among these potential inhibitors, a very promising compound was discovered exhibiting nanomolar activity for MMP-13 and was highly selective for this enzyme compared to MMP-1, -14, and TACE. This compound acted as a slow-binding inhibitor of MMP-13 and was demonstrated to be effective in an in vitro collagen assay and in a model of cartilage degradation. Furthermore, a docking study was conducted for this compound in order to investigate its binding interactions with MMP-13 and the reasons for its selectivity toward MMP-13 versus other MMPs.


Biochemical Journal | 2010

Reactive-site mutants of N-TIMP-3 that selectively inhibit ADAMTS-4 and ADAMTS-5: biological and structural implications

Ngee Han Lim; Masahide Kashiwagi; Robert Visse; Jonathan S Jones; Jan J. Enghild; Keith Brew; Hideaki Nagase

We have reported previously that reactive-site mutants of N-TIMP-3 [N-terminal inhibitory domain of TIMP-3 (tissue inhibitor of metalloproteinases 3)] modified at the N-terminus, selectively inhibited ADAM17 (a disintegrin and metalloproteinase 17) over the MMPs (matrix metalloproteinases). The primary aggrecanases ADAMTS (ADAM with thrombospondin motifs) -4 and -5 are ADAM17-related metalloproteinases which are similarly inhibited by TIMP-3, but are poorly inhibited by other TIMPs. Using a newly developed recombinant protein substrate based on the IGD (interglobular domain) of aggrecan, gst-IGD-flag, these reactive-site mutants were found to similarly inhibit ADAMTS-4 and ADAMTS-5. Further mutations of N-TIMP-3 indicated that up to two extra alanine residues can be attached to the N-terminus before the Ki (app) for ADAMTS-4 and ADAMTS-5 increased to over 100 nM. No other residues tested at the [−1] position produced inhibitors as potent as the alanine mutant. The mutants N-TIMP-3(T2G), [−1A]N-TIMP-3 and [−2A]N-TIMP-3 were effective inhibitors of aggrecan degradation, but not of collagen degradation in both IL-1α (interleukin-1α)-stimulated porcine articular cartilage explants and IL-1α with oncostatin M-stimulated human cartilage explants. Molecular modelling studies indicated that the [−1A]N-TIMP-3 mutant has additional stabilizing interactions with the catalytic domains of ADAM17, ADAMTS-4 and ADAMTS-5 that are absent from complexes with MMPs. These observations suggest that further mutation of the residues of N-TIMP-3 which make unique contacts with these metalloproteinases may allow discrimination between them.


Journal of Biological Chemistry | 2011

The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain CRYSTAL STRUCTURE AND BIOLOGICAL FUNCTIONS

Anna Tochowicz; Peter Goettig; Richard J. Evans; Robert Visse; Yasuyuki Shitomi; Ralf Palmisano; Noriko Ito; Klaus Richter; Klaus Maskos; Daniel Franke; Dmitri I. Svergun; Hideaki Nagase; Wolfram Bode; Yoshifumi Itoh

Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

Collaboration


Dive into the Robert Visse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Leikin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Makareeva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sejin Han

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Brew

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge