Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Brock is active.

Publication


Featured researches published by Robert W. Brock.


Journal of Pharmacology and Experimental Therapeutics | 2004

Mechanisms of Acetaminophen-Induced Hepatotoxicity: Role of Oxidative Stress and Mitochondrial Permeability Transition in Freshly Isolated Mouse Hepatocytes

Angela B. Reid; Richard C. Kurten; Sandra S. McCullough; Robert W. Brock; Jack A. Hinson

Freshly isolated mouse hepatocytes were used to determine the role of mitochondrial permeability transition (MPT) in acetaminophen (APAP) toxicity. Incubation of APAP (1 mM) with hepatocytes resulted in cell death as indicated by increased alanine aminotransferase in the media and propidium iodide fluorescence. To separate metabolic events from later events in toxicity, hepatocytes were preincubated with APAP for 2 h followed by centrifugation of the cells and resuspension of the pellet to remove the drug and reincubating the cells in media alone. At 2 h, toxicity was not significantly different between control and APAP-incubated cells; however, preincubation with APAP followed by reincubation with media alone resulted in a marked increase in toxicity at 3 to 5 h that was not different from incubation with APAP for the entire time. Inclusion of cyclosporine A, trifluoperazine, dithiothreitol (DTT), or N-acetylcysteine (NAC) in the reincubation phase prevented hepatocyte toxicity. Dichlorofluorescein fluorescence increased during the reincubation phase, indicating increased oxidative stress. Tetramethylrhodamine methyl ester perchlorate fluorescence decreased during the reincubation phase indicating a loss of mitochondrial membrane potential. Inclusion of cyclosporine A, DTT, or NAC decreased oxidative stress and loss of mitochondrial membrane potential. Confocal microscopy studies with the dye calcein acetoxymethyl ester indicated that MPT had also occurred. These data are consistent with a hypothesis where APAP-induced cell death occurs by two phases, a metabolic phase and an oxidative phase. The metabolic phase occurs with GSH depletion and APAP-protein binding. The oxidative phase occurs with increased oxidative stress, loss of mitochondrial membrane potential, MPT, and toxicity.


Journal of Inflammation | 2010

Hypercholesterolemia and microvascular dysfunction: interventional strategies

Phoebe A. Stapleton; Adam G. Goodwill; Milinda E. James; Robert W. Brock; Jefferson C. Frisbee

Hypercholesterolemia is defined as excessively high plasma cholesterol levels, and is a strong risk factor for many negative cardiovascular events. Total cholesterol levels above 200 mg/dl have repeatedly been correlated as an independent risk factor for development of peripheral vascular (PVD) and coronary artery disease (CAD), and considerable attention has been directed toward evaluating mechanisms by which hypercholesterolemia may impact vascular outcomes; these include both results of direct cholesterol lowering therapies and alternative interventions for improving vascular function. With specific relevance to the microcirculation, it has been clearly demonstrated that evolution of hypercholesterolemia is associated with endothelial cell dysfunction, a near-complete abrogation in vascular nitric oxide bioavailability, elevated oxidant stress, and the creation of a strongly pro-inflammatory condition; symptoms which can culminate in profound impairments/alterations to vascular reactivity. Effective interventional treatments can be challenging as certain genetic risk factors simply cannot be ignored. However, some hypercholesterolemia treatment options that have become widely used, including pharmaceutical therapies which can decrease circulating cholesterol by preventing either its formation in the liver or its absorption in the intestine, also have pleiotropic effects with can directly improve peripheral vascular outcomes. While physical activity is known to decrease PVD/CAD risk factors, including obesity, psychological stress, impaired glycemic control, and hypertension, this will also increase circulating levels of high density lipoprotein and improving both cardiac and vascular function. This review will provide an overview of the mechanistic consequences of the predominant pharmaceutical interventions and chronic exercise to treat hypercholesterolemia through their impacts on chronic sub-acute inflammation, oxidative stress, and microvascular structure/function relationships.


Journal of Vascular Surgery | 1999

Cytokines contribute to early hepatic parenchymal injury and microvascular dysfunction after bilateral hindlimb ischemia.

D. Kirk Lawlor; Robert W. Brock; Kenneth A. Harris; Richard F. Potter

PURPOSE Hepatic dysfunction may contribute to death from multiple organ dysfunction after abdominal aortic surgery. Several factors are likely responsible, and the purpose of this study was to determine whether the cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 (IL-1) are involved in initiating this remote hepatic injury. METHODS In a normotensive rat model of 4-hour bilateral hindlimb ischemia/reperfusion (I/R), we measured systemic TNF-alpha and IL-1 levels throughout the I/R period. Rats were randomly assigned to either the 3-hour control group, the 3-hour I/R group, or the I/R group with administration of a polyclonal antibody (PAb) to TNF-alpha (I/R + TNF-alpha PAb). Direct evidence of lethal hepatocyte injury through the labeling of nuclei by propidium iodide (per 10(-1)mm(3)) and altered microvascular perfusion were assessed by using intravital microscopy. RESULTS Systemic TNF-alpha peaked at 83.97 pg/mL (P <.05, n = 5) at 30 minutes of reperfusion and returned to baseline in 60 to 90 minutes. No significant change in systemic IL-1 was detected (P <.05, n = 4). Alanine aminotransferase increased 2.5-fold in the I/R group through 3 hours of reperfusion (P <.05, n = 4), and TNF-alpha PAb did not attenuate this alanine aminotransferase increase (P <.05, n = 6). Lethal hepatocyte injury increased by 8-fold in the I/R group compared with the control group (P <.05, n = 5), whereas TNF-alpha PAb significantly reduced this injury (P <.05, n = 4). No regional differences in injury were noted within the acinus. Total perfusion within the microvascular unit did not drop; however, significant flow heterogeneity was observed. The proportion of continuously perfused sinusoids declined in the I/R group after 3 hours of reperfusion in both periportal (62.0 +/- 2.2, P <.05) and, to a lesser, although significant, degree, in the pericentral regions (73. 2 +/- 1.73, P <.05). CONCLUSION By scavenging extracellular TNF-alpha with a PAb, we provide direct evidence that TNF-alpha contributes to, but is not solely responsible for, early remote hepatocellular injury and microvascular dysfunction. The administration of TNF-alpha PAb reduced lethal hepatocyte injury in both regions of the acinus and also improved perfusion in the periportal region (76.8 +/- 5.41, P <.05), but not in the pericentral region. This suggests that TNF-alpha released during reperfusion mediates early remote hepatocellular injury and microvascular dysfunction after a remote ischemic insult.


BMC Endocrine Disorders | 2009

Alteration of renal respiratory Complex-III during experimental type-1 diabetes.

Shankar Munusamy; Hamida Saba; Tanecia Mitchell; Judit Megyesi; Robert W. Brock; Lee Ann MacMillan-Crow

BackgroundDiabetes has become the single most common cause for end-stage renal disease in the United States. It has been established that mitochondrial damage occurs during diabetes; however, little is known about what initiates mitochondrial injury and oxidant production during the early stages of diabetes. Inactivation of mitochondrial respiratory complexes or alteration of their critical subunits can lead to generation of mitochondrial oxidants, mitochondrial damage, and organ injury. Thus, one goal of this study was to determine the status of mitochondrial respiratory complexes in the rat kidney during the early stages of diabetes (5-weeks post streptozotocin injection).MethodsMitochondrial complex activity assays, blue native gel electrophoresis (BN-PAGE), Complex III immunoprecipitation, and an ATP assay were performed to examine the effects of diabetes on the status of respiratory complexes and energy levels in renal mitochondria. Creatinine clearance and urine albumin excretion were measured to assess the status of renal function in our model.ResultsInterestingly, of all four respiratory complexes only cytochrome c reductase (Complex-III) activity was significantly decreased, whereas two Complex III subunits, Core 2 protein and Rieske protein, were up regulated in the diabetic renal mitochondria. The BN-PAGE data suggested that Complex III failed to assemble correctly, which could also explain the compensatory upregulation of specific Complex III subunits. In addition, the renal F0F1-ATPase activity and ATP levels were increased during diabetes.ConclusionIn summary, these findings show for the first time that early (and selective) inactivation of Complex-III may contribute to the mitochondrial oxidant production which occurs in the early stages of diabetes.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Integration of skeletal muscle resistance arteriolar reactivity for perfusion responses in the metabolic syndrome

Jefferson C. Frisbee; John M. Hollander; Robert W. Brock; Han-Gang Yu; Matthew A. Boegehold

Previous study suggests that with evolution of the metabolic syndrome, patterns of arteriolar reactivity are profoundly altered and may constrain functional hyperemia. This study investigated interactions between parameters of vascular reactivity at two levels of resistance arterioles in obese Zucker rats (OZR), translating these observations into perfusion regulation for in situ skeletal muscle. Dilation of isolated and in situ resistance arterioles from OZR to acetylcholine, arachidonic acid (AA), and hypoxia (isolated arterioles only) were blunted vs. lean Zucker rats (LZR), although dilation to adenosine was intact. Increased adrenergic tone (phenylephrine) or intralumenal pressure (ILP) impaired dilation in both strains (OZR>LZR). Treatment of OZR arterioles with Tempol (superoxide dismutase mimetic) or SQ-29548 (prostaglandin H2/thromboxane A2 receptor antagonist) improved dilator reactivity under control conditions and with increased ILP, but had minimal effect with increased adrenergic tone. Arteriolar dilation to adenosine was well maintained in both strains under all conditions. For in situ cremasteric arterioles, muscle contraction-induced elevations in metabolic demand elicited arteriolar dilations and hyperemic responses that were blunted in OZR vs. LZR, although distal parallel arterioles were characterized by heterogeneous dilator and perfusion responses. alpha-Adrenoreceptor blockade improved outcomes at rest but had minimal effect with elevated metabolic demand. Treatment with Tempol or SQ-29548 had minimal impact at rest, but lessened distal arteriolar perfusion heterogeneity with increased metabolic demand. In blood-perfused gastrocnemius of OZR, perfusion was constrained primarily by adrenergic tone, while myogenic activation and endothelium-dependent dilation did not appear to contribute significantly to ischemia. These results of this novel, integrated approach suggest that adrenergic tone and metabolic dilation are robust determinants of bulk perfusion to skeletal muscle of OZR, while endothelial dysfunction may more strongly regulate perfusion distribution homogeneity via the impact of oxidant stress and AA metabolism.


Comparative Hepatology | 2005

A remission spectroscopy system for in vivo monitoring of hemoglobin oxygen saturation in murine hepatic sinusoids, in early systemic inflammation

Christian Wunder; Robert W. Brock; Alfons Krug; Norbert Roewer; Otto Eichelbrönner

BackgroundDuring the early stages of systemic inflammation, the liver integrity is compromised by microcirculatory disturbances and subsequent hepatocellular injury. Little is known about the relationship between the hemoglobin oxygen saturation (HbsO2) in sinusoids and the hepatocellular mitochondrial redox state, in early systemic inflammation. In a murine model of early systemic inflammation, we have explored the association between the sinusoidal HbsO2 detected with a remission spectroscopy system and 1.) the NAD(P)H autofluorescence (an indicator of the intracellular mitochondrial redox state) and 2.) the markers of hepatocellular injury.ResultsAnimals submitted to 1 hour bilateral hindlimb ischemia (I) and 3 hours of reperfusion (R) (3.0 h I/R) exhibited lower HbsO2 values when compared with sham. Six hours I/R (1 hour bilateral hindlimb ischemia and 6 hours of reperfusion) and the continuous infusion of endothelin-1 (ET-1) further aggravated the hypoxia in HbsO2. The detected NAD(P)H autofluorescence correlated with the detected HbsO2 values and showed the same developing. Three hours I/R resulted in elevated NAD(P)H autofluorescence compared with sham animals. Animals after 6.0 h I/R and continuous infusion of ET-1 revealed higher NAD(P)H autofluorescence compared with 3.0 h I/R animals. Overall the analysed HbsO2 values correlated with all markers of hepatocellular injury.ConclusionDuring the early stages of systemic inflammation, there is a significant decrease in hepatic sinusoidal HbsO2. In parallel, we detected an increasing NAD(P)H autofluorescence representing an intracellular inadequate oxygen supply. Both changes are accompanied by increasing markers of liver cell injury. Therefore, remission spectroscopy in combination with NAD(P)H autofluorescence provides information on the oxygen distribution, the metabolic state and the mitochondrial redox potential, within the mouse liver.


Critical Care | 2007

Liver dysfunction after lung recruitment manoeuvres during pressure-controlled ventilation in experimental acute respiratory distress

Markus Kredel; Ralf M. Muellenbach; Robert W. Brock; Hans-Hinrich Wilckens; Joerg Brederlau; Norbert Roewer; Christian Wunder

IntroductionConsequences of lung recruitment with prolonged high positive end-expiratory pressure (PEEP) ventilation for liver function are unclear. We therefore investigated liver dysfunction during two different ventilation treatment regimens of experimental acute respiratory distress syndrome.MethodsSixteen anaesthetised juvenile pietrain pigs were ventilated in the pressure-controlled mode (PCV) with an inspiratory fraction of oxygen (FiO2) of 1.0, a respiratory frequency of 30 per minute, a tidal volume of 6 ml/kg, and a PEEP of 5 cm H2O. After lung injury was induced by repeated pulmonary lavage with normal saline, animals were randomly assigned into two groups (n = 8 each) for a 24-hour trial: PCV (unchanged ventilation) and PCV with recruitment (PCV+R) (starting with a sustained inflation of 50 cm H2O for 1 minute, the ventilation was continued while increasing PEEP in increments of 3 cm H2O every 15 minutes as long as arterial oxygen tension [PaO2] improved). After recruitment, FiO2 was reduced to 0.4 and the PEEP was lowered every 15 minutes until PaO2 decreased to 12.0 to 14.7 kPa (90 to 110 torr). Serum levels of hyaluronic acid (HA), routine liver serum markers, and plasma disappearance rate of indocyanine green (ICG) were tested before and after lung injury, and 6 and 18 hours after randomisation. Liver serum markers were also tested at 24 hours. Paraffin sections of liver tissue stained by haematoxylin and eosin were made after euthanisation.ResultsThe PCV+R group exhibited more polymorphonuclear neutrophils and lymphocytes in the liver sinusoids: median score (interquartile range) of 1.5 (1.4 to 1.5) compared to 0.9 (0.7 to 1.1) (p = 0.01). Elevation of bilirubin, aspartate aminotransferase, and lactate dehydrogenase was more prominent in the PCV+R group. Plasma disappearance rate of ICG indicated no liver dysfunction. HA levels in the PCV+R group gradually increased and were significantly higher (p < 0.001) at 6 and 18 hours with 59 (57 to 64) and 75 (66 to 84) ng/ml, respectively, than in the PCV group with 34 (32 to 48) and 41 (38 to 42) ng/ml, respectively.ConclusionThe PCV+R group showed a more prominent inflammatory reaction in their liver sinusoids accompanied by increased serum levels of liver enzymes and HA. Therefore, recruitment with higher PEEP levels for treatment of respiratory failure might lead to liver dysfunction.


Microcirculation | 2007

Obesity, Insulin Resistance and Hepatic Perfusion

Robert W. Brock; Robert B. Dorman

ABSTRACT


Microcirculation | 2010

Carbon monoxide has antioxidative properties in the liver involving p38 MAP kinase pathway in a murine model of systemic inflammation.

Jürgen Brugger; Martin Alexander Schick; Robert W. Brock; Anja Baumann; Ralf M. Muellenbach; Norbert Roewer; Christian Wunder

Please cite this paper as: Brugger, Schick, Brock, Baumann, Muellenbach, Roewer and Wunder (2010). Carbon Monoxide has Antioxidative Properties in the Liver Involving p38 MAP Kinase Pathway in a Murine Model of Systemic Inflammation. Microcirculation17(7), 504–513.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats.

Jefferson C. Frisbee; Adam G. Goodwill; Stephanie J. Frisbee; Joshua T. Butcher; Robert W. Brock; I. Mark Olfert; Evan DeVallance; Paul D. Chantler

Evolution of metabolic syndrome is associated with a progressive reduction in skeletal muscle microvessel density, known as rarefaction. Although contributing to impairments to mass transport and exchange, the temporal development of rarefaction and the contributing mechanisms that lead to microvessel loss are both unclear and critical areas for investigation. Although previous work suggests that rarefaction severity in obese Zucker rats (OZR) is predicted by the chronic loss of vascular nitric oxide (NO) bioavailability, we have determined that this hides a biphasic development of rarefaction, with both early and late components. Although the total extent of rarefaction was well predicted by the loss in NO bioavailability, the early pulse of rarefaction developed before a loss of NO bioavailability and was associated with altered venular function (increased leukocyte adhesion/rolling), and early elevation in oxidant stress, TNF-α levels, and the vascular production of thromboxane A2 (TxA2). Chronic inhibition of TNF-α blunted the severity of rarefaction and also reduced vascular oxidant stress and TxA2 production. Chronic blockade of the actions of TxA2 also blunted rarefaction, but did not impact oxidant stress or inflammation, suggesting that TxA2 is a downstream outcome of elevated reactive oxygen species and inflammation. If chronic blockade of TxA2 is terminated, microvascular rarefaction in OZR skeletal muscle resumes, but at a reduced rate despite low NO bioavailability. These results suggest that therapeutic interventions against inflammation and TxA2 under conditions where metabolic syndrome severity is moderate or mild may prevent the development of a condition of accelerated microvessel loss with metabolic syndrome.

Collaboration


Dive into the Robert W. Brock's collaboration.

Top Co-Authors

Avatar

Jefferson C. Frisbee

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Ann MacMillan-Crow

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamida Saba

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge