Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Corkery is active.

Publication


Featured researches published by Robert W. Corkery.


Zeolites | 1997

Low-temperature synthesis and characterization of a stable colloidal TPA-silicalite-1 suspension

Robert W. Corkery; Barry W. Ninham

A stable colloidal suspension of the high-silica zeolite, TPA-silicalite-1, has been synthesized at below approximately 35°C and 1 atmosphere pressure in a precipitated silica-TPAOH solution aged for 40 months, as confirmed by small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), and electron diffraction. Condensation of the aged, TPA-silicalite-1 sol by concentration, followed by purification, drying, and calcinination, yielded a clear (in bulk), glassy silicalite-1 ceramic-like material, stable in air below ca. 800°C. Thus, nucleation and growth of TPA-silicalite-1 is demonstrated for the first time at relatively low temperatures (


RSC Advances | 2013

3D titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths

Christian Mille; Eric Tyrode; Robert W. Corkery

3D titania photonic crystals are replicated from single gyroid structures found in the butterfly Callophrys rubi. Photonic crystals were characterised using SEM imaging, X-ray and Raman scattering and reflection spectroscopy. The overall symmetry and topology of the original single gyroid structures is replicated with high fidelity. Titania replicas display photonic responses that are thermal history dependent. Replicas treated at 700 °C, show up to 96% reflectivity at ∼505 nm, while at lower and higher treatment temperatures the photonic response was not as pronounced. Simulated band structures fitted to the observed spectral reflectivity data constrain the solid volume fractions and dielectric constants of the replicas. The titania photonic crystals were also found to be optically active, with both left- and right-handed single gyroids contributing to the chiral response. The 3D titania photonic crystals replicated here have nearly complete overlapping of partial band gaps, strongly suggesting that materials with full photonic band gaps are experimentally within reach using the general replication approach reported here.


Journal of Materials Chemistry | 2007

One-pot synthesis of well ordered mesoporous magnetic carriers

Nina Andersson; Robert W. Corkery; Peter Carl Anders Alberius

The facile preparation of a mesoporous magnetic carrier technology is demonstrated. The micron-sized spherical mesostructured particles are prepared using a newly-developed, one-step, combined emulsion and solvent evaporation (ESE) method. The surfactant-templated silica matrix display a well-ordered internal pore architecture. Very limited pore blocking, and only to a limited degree disordered- or worm-like structures are observed, induced by the iron oxide nanoparticles added to provide the superparamagnetic properties.The iron oxide content was precisely controlled, and the magnetic properties were well preserved during the process. Finally we demonstrate the applicability of the magnetically separable mesoporous material as an adsorbent for specific dissolved materials from dilute aqueous solutions.


Biochimica et Biophysica Acta | 2015

Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.

Yaqiong Li; Yuankui Lin; Christopher J. Garvey; Debra Birch; Robert W. Corkery; Patrick C. Loughlin; Hugo Scheer; Robert D. Willows; Min Chen

Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/β allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.


Biochimica et Biophysica Acta | 2013

Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy.

Cathrine Albèr; Birgit D. Brandner; Sebastian Björklund; Peter Billsten; Robert W. Corkery; Johan Engblom

The rather thin outermost layer of the mammalian skin, stratum corneum (SC), is a complex biomembrane which separates the water rich inside of the body from the dry outside. The skin surface can be exposed to rather extreme variations in ambient conditions (e.g. water activity, temperature and pH), with potential effects on the barrier function. Increased understanding of how the barrier is affected by such changes is highly relevant for regulation of transdermal uptake of exogenous chemicals. In the present study we investigate the effect of hydration and the use of a well-known humectant, urea, on skin barrier ultrastructure by means of confocal Raman microspectroscopy. We also perform dynamic vapor sorption (DVS) microbalance measurements to examine the water uptake capacity of SC pretreated with urea. Based on novel Raman images, constructed from 2D spectral maps, we can distinguish large water inclusions within the skin membrane exceeding the size of fully hydrated corneocytes. We show that these inclusions contain water with spectral properties similar to that of bulk water. The results furthermore show that the ambient water activity has an important impact on the formation of these water inclusions as well as on the hydration profile across the membrane. Urea significantly increases the water uptake when present in skin, as compared to skin without urea, and it promotes formation of larger water inclusions in the tissue. The results confirm that urea can be used as a humectant to increase skin hydration.


RSC Advances | 2016

Ionomer-like structure in mature oil paint binding media

Joen J. Hermans; Katrien Keune; Annelies van Loon; Robert W. Corkery; Piet D. Iedema

Infrared spectra of samples from oil paintings often show metal carboxylate bands that are broader and shifted compared to those of crystalline metal soap standards (metal complexes of long-chain saturated fatty acids). Using quantitative attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), it is demonstrated that the broad metal carboxylate band is typically too intense to be explained by carboxylates adsorbed on the surface of pigment particles or disordered metal complexes of saturated fatty acids. The metal carboxylate species associated with the broad bands must therefore be an integral part of the polymerized binding medium. Small-angle X-ray scattering (SAXS) measurements on model ionomer systems based on linseed oil revealed that the medium contains ionic clusters similar to more classical ionomers. These structural similarities are very helpful in understanding the chemistry of mature oil paint binding media and the potential degradation mechanisms that affect oil paintings.


Langmuir | 2014

Phase Transitions and Chain Dynamics of Surfactants Intercalated into the Galleries of Naturally Occurring Clay Mineral Magadiite

Boris B. Kharkov; Robert W. Corkery; Sergey V. Dvinskikh

We investigate conformational dynamics and phase transitions of surfactant molecules confined in the layered galleries of the organo-modified, natural polysilicate clay, magadiite. We have shown that our approach to studying this class of materials is capable of delivering detailed information on the molecular mobility of the confined molecules. From the analysis of the measured heteronuclear dipolar couplings, the orientational order parameters of the C-H bonds along the hydrocarbon chain have been determined. Three phases have been observed in the nanocomposite, characterized by distinct dynamical states of the surfactant. At room temperature, restricted mobility of the molecules led to the adoption of an essentially all-trans conformation by the chains. This behavior can be described by a model incorporating small-angle wobbling around the long molecular axes of the chains. Upon heating, dynamic transformation takes place, resulting in a rotator type solid phase where molecules in extended all-trans conformations undergo fast and unrestricted rotation about their respective symmetry axes. The second phase transition is associated with chain melting and the onset of translational dynamics and results in an essentially liquid-crystalline-like state of the organic component. The mobility of the surfactant is one of the key factors facilitating the efficient penetration of macromolecules in the process of preparing of polymer/organoclay nanocomposites. The exploration of dynamic properties of the functionalizing organic layer should provide important input into the improved design of new organic-inorganic hybrid materials.


Langmuir | 2008

Pore morphology and interconnectivity in a mesoporous/macroporous polyhedral silica foam material

Dulce Vargas-Florencia; István Furó; Robert W. Corkery

The pore system of a highly swollen, block-copolymer-templated, polyhedral silica foam material is investigated by a combination of transmission electron microscopy, nitrogen sorption, and NMR cryoporometry. The adsorption-desorption hysteresis and melting-freezing hysteresis data recorded by the respective methods provide pore volume and access channel sizes that virtually coincide for the two used methods. This provides a consistent picture where polyhedral foam cells of 60-70 nm diameter are interconnected by cylindrical access channels with several characteristic sizes for the latter.


Journal of Materials Chemistry | 2013

A structural and thermal conductivity study of highly porous, hierarchical polyhedral nanofoam shells made by condensing silica in microemulsion films on the surface of emulsified oil drops

Christian Mille; Robert W. Corkery

Light-weight solid foams are utilized in applications such as packaging and insulation mainly due to their intrinsically high porosity, low relative density and associated mechanical and transport ...


Interface Focus | 2017

On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals

Robert W. Corkery; Eric Tyrode

Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue–green–yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 104–105 crystals, for concluding the preferential alignment seen along the at the level of single scales, appears ubiquitous. By contrast, orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures.

Collaboration


Dive into the Robert W. Corkery's collaboration.

Researchain Logo
Decentralizing Knowledge