Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Davies is active.

Publication


Featured researches published by Robert W. Davies.


Nature Genetics | 2012

Meta-analysis identifies six new susceptibility loci for atrial fibrillation

Patrick T. Ellinor; Kathryn L. Lunetta; Christine M. Albert; Nicole L. Glazer; Marylyn D. Ritchie; Albert V. Smith; Dan E. Arking; Martina Müller-Nurasyid; Bouwe P. Krijthe; Steven A. Lubitz; Joshua C. Bis; Mina K. Chung; Marcus Dörr; Kouichi Ozaki; Jason D. Roberts; J. Gustav Smith; Arne Pfeufer; Moritz F. Sinner; Kurt Lohman; Jingzhong Ding; Nicholas L. Smith; Jonathan D. Smith; Michiel Rienstra; Kenneth Rice; David R. Van Wagoner; Jared W. Magnani; Reza Wakili; Sebastian Clauss; Jerome I. Rotter; Gerhard Steinbeck

Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 × 10−8). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


Nature Genetics | 2014

Low copy number of the salivary amylase gene predisposes to obesity

Mario Falchi; Julia S. El-Sayed Moustafa; Petros Takousis; Francesco Pesce; Amélie Bonnefond; Johanna C. Andersson-Assarsson; Peter H. Sudmant; Rajkumar Dorajoo; Mashael Al-Shafai; Leonardo Bottolo; Erdal Ozdemir; Hon Cheong So; Robert W. Davies; Alexandre Patrice; Robert Dent; Massimo Mangino; Pirro G. Hysi; Aurélie Dechaume; Marlène Huyvaert; Jane Skinner; Marie Pigeyre; Robert Caiazzo; Violeta Raverdy; Emmanuel Vaillant; Sarah Field; Beverley Balkau; Michel Marre; Sophie Visvikis-Siest; Jacques Weill; Odile Poulain-Godefroy

Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10−14) and serum enzyme levels (P < 2.20 × 10−16), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = −0.15 (0.02) kg/m2; P = 6.93 × 10−10) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13–1.26; P = 1.46 × 10−10). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies.


Circulation-cardiovascular Genetics | 2012

A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex.

Robert W. Davies; George A. Wells; Alexandre F.R. Stewart; Jeanette Erdmann; Svati H. Shah; Jane F. Ferguson; Alistair S. Hall; Sonia S. Anand; Mary Susan Burnett; Stephen E. Epstein; Sonny Dandona; Li Chen; Janja Nahrstaedt; Christina Loley; Inke R. König; William E. Kraus; Christopher B. Granger; James C. Engert; Christian Hengstenberg; H.-Erich Wichmann; Stefan Schreiber; W.H. Wilson Tang; Stephen G. Ellis; Daniel J. Rader; Stanley L. Hazen; Muredach P. Reilly; Nilesh J. Samani; Heribert Schunkert; Robert Roberts; Ruth McPherson

Background— Recent genome-wide association studies (GWAS) have identified several novel loci that reproducibly associate with coronary artery disease (CAD) and/or myocardial infarction risk. However, known common CAD risk variants explain only 10% of the predicted genetic heritability of the disease, suggesting that important genetic signals remain to be discovered. Methods and Results— We performed a discovery meta-analysis of 5 GWAS involving 13 949 subjects (7123 cases, 6826 control subjects) imputed at approximately 5 million single nucleotide polymorphisms, using pilot 1000 Genomes–based haplotypes. Promising loci were followed up in an additional 5 studies with 11 032 subjects (5211 cases, 5821 control subjects). A novel CAD locus on chromosome 6p21.3 in the major histocompatibility complex (MHC) between HCG27 and HLA-C was identified and achieved genome-wide significance in the combined analysis (rs3869109; p discovery=3.3×10−7, p replication=5.3×10−4 p combined=1.12×10−9). A subanalysis combining discovery GWAS showed an attenuation of significance when stringent corrections for European population structure were used (P=4.1×10−10 versus 3.2×10−7), suggesting that the observed signal is partly confounded due to population stratification. This gene dense region plays an important role in inflammation, immunity, and self–cell recognition. To determine whether the underlying association was driven by MHC class I alleles, we statistically imputed common HLA alleles into the discovery subjects; however, no single common HLA type contributed significantly or fully explained the observed association. Conclusions— We have identified a novel locus in the MHC associated with CAD. MHC genes regulate inflammation and T-cell responses that contribute importantly to the initiation and propagation of atherosclerosis. Further laboratory studies will be required to understand the biological basis of this association and identify the causative allele(s).


Circulation-cardiovascular Genetics | 2010

Improved Prediction of Cardiovascular Disease Based on a Panel of Single Nucleotide Polymorphisms Identified Through Genome-Wide Association Studies

Robert W. Davies; Sonny Dandona; Alexandre F.R. Stewart; Li Chen; Stephan G. Ellis; W.H. Wilson Tang; Stanley L. Hazen; Robert Roberts; Ruth McPherson; George A. Wells

Background—Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) at multiple loci that are significantly associated with coronary artery disease (CAD) risk. In this study, we sought to determine and compare the predictive capabilities of 9p21.3 alone and a panel of SNPs identified and replicated through GWAS for CAD. Methods and Results—We used the Ottawa Heart Genomics Study (OHGS) (3323 cases, 2319 control subjects) and the Wellcome Trust Case Control Consortium (WTCCC) (1926 cases, 2938 control subjects) data sets. We compared the ability of allele counting, logistic regression, and support vector machines. Two sets of SNPs, 9p21.3 alone and a set of 12 SNPs identified by GWAS and through a model-fitting procedure, were considered. Performance was assessed by measuring area under the curve (AUC) for OHGS using 10-fold cross-validation and WTCCC as a replication set. AUC for logistic regression using OHGS increased significantly from 0.555 to 0.608 (P=3.59×10−14) for 9p21.3 versus the 12 SNPs, respectively. This difference remained when traditional risk factors were considered in a subgroup of OHGS (1388 cases, 2038 control subjects), with AUC increasing from 0.804 to 0.809 (P=0.037). The added predictive value over and above the traditional risk factors was not significant for 9p21.3 (AUC 0.801 versus 0.804, P=0.097) but was for the 12 SNPs (AUC 0.801 versus 0.809, P=0.0073). Performance was similar between OHGS and WTCCC. Logistic regression outperformed both support vector machines and allele counting. Conclusions—Using the collective of 12 SNPs confers significantly greater predictive capabilities for CAD than 9p21.3, whether traditional risks are or are not considered. More accurate models probably will evolve as additional CAD-associated SNPs are identified.


Circulation-cardiovascular Genetics | 2010

Improved Prediction of Cardiovascular Disease Based on a Panel of SNPs Identified Through Genome Wide Association Studies

Robert W. Davies; Sonny Dandona; Alexandre F.R. Stewart; Li Chen; Stephen G. Ellis; W.H. Wilson Tang; Stanley L. Hazen; Robert Roberts; Ruth McPherson; George A. Wells

Background—Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) at multiple loci that are significantly associated with coronary artery disease (CAD) risk. In this study, we sought to determine and compare the predictive capabilities of 9p21.3 alone and a panel of SNPs identified and replicated through GWAS for CAD. Methods and Results—We used the Ottawa Heart Genomics Study (OHGS) (3323 cases, 2319 control subjects) and the Wellcome Trust Case Control Consortium (WTCCC) (1926 cases, 2938 control subjects) data sets. We compared the ability of allele counting, logistic regression, and support vector machines. Two sets of SNPs, 9p21.3 alone and a set of 12 SNPs identified by GWAS and through a model-fitting procedure, were considered. Performance was assessed by measuring area under the curve (AUC) for OHGS using 10-fold cross-validation and WTCCC as a replication set. AUC for logistic regression using OHGS increased significantly from 0.555 to 0.608 (P=3.59×10−14) for 9p21.3 versus the 12 SNPs, respectively. This difference remained when traditional risk factors were considered in a subgroup of OHGS (1388 cases, 2038 control subjects), with AUC increasing from 0.804 to 0.809 (P=0.037). The added predictive value over and above the traditional risk factors was not significant for 9p21.3 (AUC 0.801 versus 0.804, P=0.097) but was for the 12 SNPs (AUC 0.801 versus 0.809, P=0.0073). Performance was similar between OHGS and WTCCC. Logistic regression outperformed both support vector machines and allele counting. Conclusions—Using the collective of 12 SNPs confers significantly greater predictive capabilities for CAD than 9p21.3, whether traditional risks are or are not considered. More accurate models probably will evolve as additional CAD-associated SNPs are identified.


Canadian Journal of Cardiology | 2012

Inflammation and Coronary Artery Disease: Insights From Genetic Studies

Ruth McPherson; Robert W. Davies

Recent genome-wide association studies (GWASs) have provided a vast amount of new information relevant to the myriad of biological pathways related to atherosclerosis and its progression. Although atherosclerosis is a complex process, both GWASs and candidate gene studies add support to the hypothesis that proinflammatory pathways, involving both innate and adaptive immunity, play a causal role in coronary artery disease (CAD) and its clinical manifestations. Recent GWASs have identified several inflammation-related loci associated with CAD risk. These include CXCL2, encoding an atheroprotective chemokine, and a region near HLA-C in the major histocompatibility locus on chromosome 6p21. The ABO locus, also linked to CAD risk by the GWAS approach, is related to multiple phenotypes, including plasma interleukin-6 (IL-6) levels. Finally, relevant to inflammation, the 9p21 CAD risk locus appears to play a role in interferon-gamma signalling. Candidate gene studies also support a causative role of inflammation pathways in atherosclerosis. Of note, a common loss of function coding variant in the IL-6 receptor gene (IL6R) is associated with a reduction in CAD risk.


Nature Genetics | 2016

Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing

Jérôme Nicod; Robert W. Davies; Na Cai; Carl Hassett; Leo Goodstadt; Cormac Cosgrove; Benjamin K Yee; Vikte Lionikaite; Rebecca E McIntyre; Carol Ann Remme; Elisabeth M. Lodder; J.S. Gregory; Tertius Hough; Russell Joynson; Hayley Phelps; Barbara Nell; Clare Rowe; Joe Wood; Alison Walling; Nasrin Bopp; Amarjit Bhomra; Polinka Hernandez-Pliego; Jacques Callebert; Richard M. Aspden; Nick P. Talbot; Peter A. Robbins; Mark Harrison; Martin Fray; Jean-Marie Launay; Yigal M. Pinto

Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.


Europace | 2010

Evaluation of non-synonymous NPPA single nucleotide polymorphisms in atrial fibrillation

Jason D. Roberts; Robert W. Davies; Steven A. Lubitz; Isabelle L. Thibodeau; Pablo B. Nery; David H. Birnie; Emelia J. Benjamin; Robert Lemery; Patrick T. Ellinor; Michael H. Gollob

AIMS Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is an important cause of morbidity and mortality. A genetic mutation in the NPPA gene, which encodes the atrial natriuretic peptide, has been identified as the putative causative factor in a family with an autosomal dominant pattern of inheritance for AF. Two common single nucleotide polymorphisms (SNPs) in NPPA, rs5063 and rs5065, result in amino acid changes of the primary peptide and have been previously implicated in conditions associated with AF, including stroke and hypertension. Recently, the rs5063 SNP has been reported to confer an increased risk of AF development in a Chinese population. We sought to examine the associations of both rs5063 and rs5065 with AF in two separate North American cohorts of European ancestry. METHODS AND RESULTS Patients with early-onset AF, along with healthy controls, were recruited at the University of Ottawa Heart Institute (UOHI) and the Massachusetts General Hospital (MGH). Study participants were genotyped for rs5063 and rs5065 using a combination of restriction fragment length polymorphism analysis and DNA microarrays. The study genotyped a total of 620 AF cases and 2446 healthy controls. The UOHI arm of the study identified an odds ratio (OR) of 0.72 [95% confidence interval (CI): 0.42-1.24] for rs5063, whereas an OR of 1.33 (95% CI: 0.80-2.21) was observed in the MGH arm. The combined OR approximated unity (OR 0.99; 95% CI: 0.54-1.80). Analysis of rs5065 revealed an OR of 1.12 (95% CI: 0.84-1.48) in UOHI, 1.08 (95% CI 0.80-1.45) in MGH, and 1.10 (95% CI 0.90-1.35) when combined. CONCLUSION Common non-synonymous genetic variants within NPPA in these two large North American cohorts of European ancestry are not associated with the development of AF.


Canadian Journal of Cardiology | 2010

Torsades de pointes during complete atrioventricular block: Genetic factors and electrocardiogram correlates

Rajesh N. Subbiah; Michael H. Gollob; Lorne J. Gula; Robert W. Davies; Peter Leong-Sit; Allan C. Skanes; Raymond Yee; George J. Klein; Andrew D. Krahn

INTRODUCTION Atrioventricular (AV) block is infrequently associated with QT prolongation and torsades de pointes (TdP). It was hypothesized that patients with AV block-mediated QT-related arrhythmia may have latent congenital long QT syndrome or a vulnerable genetic polymorphism. METHODS Eleven patients with complete AV block and TdP were prospectively identified. Patients underwent assessment, resting electrocardiography and telemetry at baseline, during AV block and pre-TdP. Genetic testing of KCNH2, KCNQ1, KCNE1, KCNE2 and SCN5A was performed. Thirty-three patients with AV block without TdP were included for comparison. RESULTS Genetic variants were identified in 36% of patients with AV block and TdP. Patients with AV block who developed TdP had significantly longer mean (+/- SD) corrected QT intervals (440+/-93 ms versus 376+/-40 ms, P=0.048) and Tpeak to Tend (Tp-Te) intervals (147+/-25 ms versus 94+/-25 ms, P=0.0001) than patients with AV block alone. In patients with a genetic variant, there was a significant increase in Tp-Te intervals at baseline, in AV block and pre-TdP compared with those who were genotype negative. A personal or family history of syncope or sudden death was more likely observed in patients with a genetic variant. CONCLUSIONS TdP in the setting of AV block may be a marker of an underlying genetic predisposition to reduced repolarization reserve. The Tp-Te interval at baseline, in AV block and pre-TdP may predict a genetic mutation or polymorphism compromising repolarization reserve. Patients with TdP in the setting of AV block represent a phenotypic manifestation of latent congenital long QT syndrome.

Collaboration


Dive into the Robert W. Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Roberts

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Li Chen

University of Ottawa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen E. Epstein

MedStar Washington Hospital Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge