Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Doms is active.

Publication


Featured researches published by Robert W. Doms.


Cell | 1996

A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors

Benjamin J. Doranz; Joseph Rucker; Yanjie Yi; Michel Samson; Stephen C. Peiper; Marc Parmentier; Ronald G. Collman; Robert W. Doms

Here, we show that the beta-chemokine receptor CKR-5 serves as a cofactor for M-tropic HIV viruses. Expression of CKR-5 with CD4 enables nonpermissive cells to form syncytia with cells expressing M-tropic, but not T-tropic, HIV-1 env proteins. Expression of CKR-5 and CD4 enables entry of a M-tropic, but not a T-tropic, virus strain. A dual-tropic primary HIV-1 isolate (89.6) utilizes both Fusin and CKR-5 as entry cofactors. Cells expressing the 89.6 env protein form syncytia with QT6 cells expressing CD4 and either Fusin or CKR-5. The beta-chemokine receptors CKR-3 and CKR-2b support HIV-1 89.6 env-mediated syncytia formation but do not support fusion by any of the T-tropic or M-tropic strains tested. Our results suggest that the T-tropic viruses characteristic of disease progression may evolve from purely M-tropic viruses prevalent early in virus infection through changes in the env protein that enable the virus to use multiple entry cofactors.


Nature Immunology | 2004

HIV vaccine design and the neutralizing antibody problem

Dennis R. Burton; Ronald C. Desrosiers; Robert W. Doms; Wayne C. Koff; Peter D. Kwong; John P. Moore; Gary J. Nabel; Joseph Sodroski; Ian A. Wilson; Richard T. Wyatt

Eliciting broadly neutralizing antibodies to human immunodeficiency virus could bring closer the goal of a successful AIDS vaccine. Here the International AIDS Vaccine Initiative Neutralizing Antibody Consortium discusses current approaches to overcome the problems faced.


Nature | 1998

A new classification for HIV-1

Edward A. Berger; Robert W. Doms; Eva Maria Fenyö; Bette T. Korber; Dan R. Littman; John P. Moore; Quentin J. Sattentau; Hanneke Schuitemaker; Joseph Sodroski; Robin A. Weiss

The phenotype of HIV-1 isolates is defined by the cells in which they replicate in vitro, but these phenotypes can change in vivo with profound implications for viral transmission, pathogenesis and disease progression. Here we propose a new classification system based on co-receptor use, providing a more accurate description of viral phenotype than the present imprecise and often misleading classification schemes.


Cell | 1996

CD4-independent infection by HIV-2 is mediated by Fusin/CXCR4

Michael J. Endres; Paul R. Clapham; Mark Marsh; Ména Ahuja; Julie D. Turner; Áine McKnight; Jill F Thomas; Beth Stoebenau-Haggarty; Sunny Choe; Patricia J. Vance; Timothy N. C. Wells; Christine A. Power; Shaheen S Sutterwala; Robert W. Doms; Nathaniel R. Landau; James A. Hoxie

Several members of the chemokine receptor family have been shown to function in association with CD4 to permit HIV-1 entry and infection. However, the mechanism by which these molecules serve as CD4-associated cofactors is unclear. In the present report, we show that one member of this family, termed Fusin/ CXCR4, is able to function as an alternative receptor for some isolates of HIV-2 in the absence of CD4. This conclusion is supported by the finding that (1) CD4-independent infection by these viruses is inhibited by an anti-Fusin monoclonal antibody, (2) Fusin expression renders human and nonhuman CD4-negative cell lines sensitive to HIV-2-induced syncytium induction and/or infection, and (3) Fusin is selectively down-regulated from the cell surface following HIV-2 infection. The finding that one chemokine receptor can function as a primary viral receptor strongly suggests that the HIV envelope glycoprotein contains a binding site for these proteins and that differences in the affinity and/or the availability of this site can extend the host range of these viruses to include a number of CD4-negative cell types.


Nature Immunology | 2002

Diversity of receptors binding HIV on dendritic cell subsets.

Stuart Turville; Paul U. Cameron; Amanda J. Handley; George Lin; Stefan Pöhlmann; Robert W. Doms; Anthony L. Cunningham

The ability of HIV-1 to use dendritic cells (DCs) for transport and to transfer virus to activated T cells in the lymph node may be crucial in early HIV-1 pathogenesis. We have characterized primary DCs for the receptors involved in viral envelope attachment and observed that C-type lectin receptor (CLR) binding was predominant in skin DCs, whereas binding to emigrating and tonsil DCs was CD4-dependent. No one CLR was solely responsible for envelope binding on all skin DC subsets. DC-SIGN (DC-specific ICAM-3–grabbing nonintegrin) was only expressed by CD14+CDlalo dermal DCs. The mannose receptor was expressed by CD1ahi and CD14+CDlalo dermal DCs, and langerin was expressed by Langerhans cells. The diversity of CLRs able to bind HIV-1 in skin DCs may reflect their ability to bind a range of microbial glycoproteins.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics

Jacqueline D. Reeves; Stephen A. Gallo; Navid Ahmad; John L. Miamidian; Phoebe E. Harvey; Matthew Sharron; Stefan Pöhlmann; Jeffrey N. Sfakianos; Cynthia A. Derdeyn; Robert Blumenthal; Eric Hunter; Robert W. Doms

HIV entry inhibitors include coreceptor antagonists and the fusion inhibitor T-20. T-20 binds the first helical region (HR1) in the gp41 subunit of the viral envelope (Env) protein and prevents conformational changes required for membrane fusion. HR1 appears to become accessible to T-20 after Env binds CD4, whereas coreceptor binding is thought to induce the final conformational changes that lead to membrane fusion. Thus, T-20 binds to a structural intermediate of the fusion process. Primary viruses exhibit considerable variability in T-20 sensitivity, and determinants outside of HR1 can affect sensitivity by unknown mechanisms. We studied chimeric Env proteins containing different V3 loop sequences and found that gp120/coreceptor affinity correlated with T-20 and coreceptor antagonist sensitivity, with greater affinity resulting in increased resistance to both classes of entry inhibitors. Enhanced affinity resulted in more rapid fusion kinetics, reducing the time during which Env is sensitive to T-20. Reduced coreceptor expression levels also delayed fusion kinetics and enhanced virus sensitivity to T-20, whereas increased coreceptor levels had the opposite effect. A single amino acid change (K421D) in the bridging sheet region of the primary virus strain YU2 reduced affinity for CCR5 and increased T-20 sensitivity by about 30-fold. Thus, mutations in Env that affect receptor engagement and membrane fusion rates can alter entry inhibitor sensitivity. Because coreceptor expression levels are typically limiting in vivo, individuals who express lower coreceptor levels may respond more favorably to entry inhibitors such as T-20, whose effectiveness we show depends in part on fusion kinetics.


Journal of Leukocyte Biology | 2002

Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro

Elizabeth J. Soilleux; Lesley S. Morris; George J. Leslie; Jihed Chehimi; Qi Luo; Ernest L. Levroney; John Trowsdale; Luis J. Montaner; Robert W. Doms; Drew Weissman; Nicholas Coleman; Benhur Lee

DC‐SIGN is a C‐type lectin, highly expressed on the surface ofimmature dendritic cells (DCs), that mediates efficient infection of Tcells in trans by its ability to bind HIV‐1, HIV‐2, and SIV. Inaddition, the ability of DC‐SIGN to bind adhesion molecules on surfacesof naïve T cells and endothelium also suggests its involvementin T‐cell activation and DC trafficking. To gain further insights intothe range of expression and potential functions of DC‐SIGN, weperformed a detailed analysis of DC‐SIGN expression in adult and fetaltissues and also analyzed its regulated expression on cultured DCs andmacrophages. First, we show that DC‐SIGN expression is restricted tosubsets of immature DCs in tissues and on specialized macrophages inthe placenta and lung. There were no overt differences between DC‐SIGNexpression in adult and fetal tissues except that DC‐SIGN expression inalveolar macrophages was only present after birth. Similarly, intissues, DC‐SIGN was observed primarily on immature (CD83‐negative)DCs. Secondly, in the peripheral blood, we found expression of DC‐SIGNon a small subset of BDCA‐2+ plasmacytoid DC precursors (pDC2),concordant with our finding of large numbers of DC‐SIGN‐positive cellsin allergic nasal polyps (previously shown to be infiltrated by DC2).Triple‐label confocal microscopy indicated that DC‐SIGN was colocalizedwith BDCA‐2 and CD123 on DCs in nasal polyp tissue. Consistent withthis finding is our observation that DC‐SIGN can be up‐regulated onmonocyte‐derived macrophages upon exposure to the Th2 cytokine, IL‐13. In summary, our data demonstrate the relevant populations of DC andmacrophages that express DC‐SIGN in vivo where it may impact theefficiency of virus infection and indicate that DC‐SIGN expression maybe involved in the Th2 axis of immunity.


Journal of Biological Chemistry | 2000

Maturation and Endosomal Targeting of β-Site Amyloid Precursor Protein-cleaving Enzyme THE ALZHEIMER'S DISEASE β-SECRETASE

Jason T. Huse; Donald S. Pijak; George J. Leslie; Virginia M.-Y. Lee; Robert W. Doms

The amyloidogenic Aβ peptide is liberated from the amyloid precursor protein (APP) by two proteolytic activities, β-secretase and γ-secretase. Recently, a type I membrane protein termed BACE (β-site APP cleaving enzyme) with characteristics of an aspartyl protease has been identified as the β-secretase. We undertook a series of biochemical and morphological investigations designed to characterize the basic properties of this protein. Initial studies indicated that BACE undergoes N-linked glycosylation at three of four potential sites. Metabolic pulse-chase experiments revealed that after core glycosylation, BACE is rapidly and efficiently transported to the Golgi apparatus and distal secretory pathway. BACE was also found to be quite stable, being turned over with a t 1 2 of ∼16 h. Retention of BACE in the endoplasmic reticulum by introduction of a C-terminal dilysine motif prevented complex carbohydrate processing and demonstrated that propeptide cleavage occurs after exit from this organelle. BACE exhibited intramolecular disulfide bonding but did not form oligomeric structures by standard SDS-polyacrylamide gel electrophoresis analysis and sedimented as a monomer in sucrose velocity gradients. Immunofluorescence studies showed a largely vesicular staining pattern for BACE that colocalized well with endosomal, but not lysosomal, markers. Measurable levels of BACE were also detected on the plasma membrane by both immunostaining and cell surface biotinylation, and cycling of the protein between the cell membrane and the endosomes was documented. A cytoplasmic dileucine motif was found to be necessary for normal targeting of BACE to the endosomal system and accumulation of the protein in this intracellular site.


Journal of Biological Chemistry | 1999

Epitope Mapping of CCR5 Reveals Multiple Conformational States and Distinct but Overlapping Structures Involved in Chemokine and Coreceptor Function

Benhur Lee; M Sharron; Cédric Blanpain; Benjamin J. Doranz; Jalal Vakili; P Setoh; E Berg; Guo-Li Liu; H R Guy; Stewart R. Durell; Marc Parmentier; Chuang-Rung Chang; Ken Price; Monica Tsang; Robert W. Doms

The chemokine receptor CCR5 is the major coreceptor for R5 human immunodeficiency virus type-1 strains. We mapped the epitope specificities of 18 CCR5 monoclonal antibodies (mAbs) to identify domains of CCR5 required for chemokine binding, gp120 binding, and for inducing conformational changes in Env that lead to membrane fusion. We identified mAbs that bound to N-terminal epitopes, extracellular loop 2 (ECL2) epitopes, and multidomain (MD) epitopes composed of more than one single extracellular domain. N-terminal mAbs recognized specific residues that span the first 13 amino acids of CCR5, while nearly all ECL2 mAbs recognized residues Tyr-184 to Phe-189. In addition, all MD epitopes involved ECL2, including at least residues Lys-171 and Glu-172. We found that ECL2-specific mAbs were more efficient than NH2- or MD-antibodies in blocking RANTES or MIP-1β binding. By contrast, N-terminal mAbs blocked gp120-CCR5 binding more effectively than ECL2 mAbs. Surprisingly, ECL2 mAbs were more potent inhibitors of viral infection than N-terminal mAbs. Thus, the ability to block virus infection did not correlate with the ability to block gp120 binding. Together, these results imply that chemokines and Env bind to distinct but overlapping sites in CCR5, and suggest that the N-terminal domain of CCR5 is more important for gp120 binding while the extracellular loops are more important for inducing conformational changes in Env that lead to membrane fusion and virus infection. Measurements of individual antibody affinities coupled with kinetic analysis of equilibrium binding states also suggested that there are multiple conformational states of CCR5. A previously described mAb, 2D7, was unique in its ability to effectively block both chemokine and Env binding as well as coreceptor activity. 2D7 bound to a unique antigenic determinant in the first half of ECL2 and recognized a far greater proportion of cell surface CCR5 molecules than the other mAbs examined. Thus, the epitope recognized by 2D7 may represent a particularly attractive target for CCR5 antagonists.


Journal of Virology | 2003

Hepatitis C Virus Glycoproteins Interact with DC-SIGN and DC-SIGNR

Stefan Pöhlmann; Jie Zhang; Frédéric Baribaud; Zhiwei Chen; George J. Leslie; George Lin; Angela Granelli-Piperno; Robert W. Doms; Charles M. Rice; Jane A. McKeating

ABSTRACT DC-SIGN and DC-SIGNR are two closely related membrane-associated C-type lectins that bind human immunodeficiency virus (HIV) envelope glycoprotein with high affinity. Binding of HIV to cells expressing DC-SIGN or DC-SIGNR can enhance the efficiency of infection of cells coexpressing the specific HIV receptors. DC-SIGN is expressed on some dendritic cells, while DC-SIGNR is localized to certain endothelial cell populations, including hepatic sinusoidal endothelial cells. We found that soluble versions of the hepatitis C virus (HCV) E2 glycoprotein and retrovirus pseudotypes expressing chimeric forms of both HCV E1 and E2 glycoproteins bound efficiently to DC-SIGN and DC-SIGNR expressed on cell lines and primary human endothelial cells but not to other C-type lectins tested. Soluble E2 bound to immature and mature human monocyte-derived dendritic cells (MDDCs). Binding of E2 to immature MDDCs was dependent on DC-SIGN interactions, while binding to mature MDDCs was partly independent of DC-SIGN, suggesting that other cell surface molecules may mediate HCV glycoprotein interactions. HCV interactions with DC-SIGN and DC-SIGNR may contribute to the establishment or persistence of infection both by the capture and delivery of virus to the liver and by modulating dendritic cell function.

Collaboration


Dive into the Robert W. Doms's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benhur Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

James A. Hoxie

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Rucker

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Parmentier

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Trevor L. Hoffman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Matthew Sharron

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge