Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Graves is active.

Publication


Featured researches published by Robert W. Graves.


Bulletin of the Seismological Society of America | 2000

The SCEC Southern California Reference Three-Dimensional Seismic Velocity Model Version 2

Harold Magistrale; Steven M. Day; Robert W. Clayton; Robert W. Graves

We describe Version 2 of the three-dimensional (3D) seismic velocity model of southern California developed by the Southern California Earthquake Center and designed to serve as a reference model for multidisciplinary research activities in the area. The model consists of detailed, rule-based representations of the major southern California basins (Los Angeles basin, Ventura basin, San Gabriel Valley, San Fernando Valley, Chino basin, San Bernardino Valley, and the Salton Trough), embedded in a 3D crust over a variable depth Moho. Outside of the basins, the model crust is based on regional tomographic results. The model Moho is represented by a surface with the depths determined by the receiver function technique. Shallow basin sediment velocities are constrained by geotechnical data. The model is implemented in a computer code that generates any specified 3D mesh of seismic velocity and density values. This parameterization is convenient to store, transfer, and update as new information and verification results become available.


Earthquake Spectra | 2014

NGA-West2 Database

Timothy D. Ancheta; Robert B. Darragh; Jonathan P. Stewart; Emel Seyhan; Walter J. Silva; Katie E. Wooddell; Robert W. Graves; Albert R. Kottke; David M. Boore; Tadahiro Kishida; Jennifer L. Donahue

The NGA-West2 project database expands on its predecessor to include worldwide ground motion data recorded from shallow crustal earthquakes in active tectonic regimes post-2000 and a set of small-to-moderate-magnitude earthquakes in California between 1998 and 2011. The database includes 21,336 (mostly) three-component records from 599 events. The parameter space covered by the database is M 3.0 to M 7.9, closest distance of 0.05 to 1,533 km, and site time-averaged shear-wave velocity in the top 30 m of VS30 = 94 m/s to 2,100 m/s (although data becomes sparse for distances >400 km and VS30 > 1,200 m/s or <150 m/s). The database includes uniformly processed time series and response spectral ordinates for 111 periods ranging from 0.01 s to 20 s at 11 damping ratios. Ground motions and metadata for source, path, and site conditions were subject to quality checks by ground motion prediction equation developers and topical working groups.


Soil Dynamics and Earthquake Engineering | 2002

Ground motion evaluation procedures for performance-based design

Jonathan P. Stewart; Shyh-Jeng Chiou; Jonathan D. Bray; Robert W. Graves; Paul Somerville; Norman A. Abrahamson

The objective of performance-based earthquake engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. Accordingly, the evaluation of ground motion intensity measures is a vital component of PBEE. This paper provides a brief synthesis of ground motion analysis procedures within a performance-based design framework, and is a summary of a recent report to which the reader is referred for details. The principal topics addressed are probabilistic characterizations of source, path, and site effects, with the discussion of these effects focusing principally on applications in active regions such as California.


Earthquake Spectra | 2014

NGA-West2 Research Project

Yousef Bozorgnia; Norman A. Abrahamson; Linda Al Atik; Timothy D. Ancheta; Gail M. Atkinson; Jack W. Baker; Annemarie S. Baltay; David M. Boore; Kenneth W. Campbell; Brian Chiou; Robert B. Darragh; Steve Day; Jennifer L. Donahue; Robert W. Graves; Nick Gregor; Thomas C. Hanks; I. M. Idriss; Ronnie Kamai; Tadahiro Kishida; Albert R. Kottke; Stephen Mahin; Sanaz Rezaeian; Badie Rowshandel; Emel Seyhan; Shrey K. Shahi; Tom Shantz; Walter J. Silva; Paul Spudich; Jonathan P. Stewart; Jennie Watson-Lamprey

The NGA-West2 project is a large multidisciplinary, multi-year research program on the Next Generation Attenuation (NGA) models for shallow crustal earthquakes in active tectonic regions. The research project has been coordinated by the Pacific Earthquake Engineering Research Center (PEER), with extensive technical interactions among many individuals and organizations. NGA-West2 addresses several key issues in ground-motion seismic hazard, including updating the NGA database for a magnitude range of 3.0–7.9; updating NGA ground-motion prediction equations (GMPEs) for the “average” horizontal component; scaling response spectra for damping values other than 5%; quantifying the effects of directivity and directionality for horizontal ground motion; resolving discrepancies between the NGA and the National Earthquake Hazards Reduction Program (NEHRP) site amplification factors; analysis of epistemic uncertainty for NGA GMPEs; and developing GMPEs for vertical ground motion. This paper presents an overview of the NGA-West2 research program and its subprojects.


international conference on e science | 2006

Managing Large-Scale Workflow Execution from Resource Provisioning to Provenance Tracking: The CyberShake Example

Ewa Deelman; Scott Callaghan; Edward H. Field; H. Francoeur; Robert W. Graves; Nitin Gupta; Vipin Gupta; Thomas H. Jordan; Carl Kesselman; Philip J. Maechling; John Mehringer; Gaurang Mehta; David A. Okaya; Karan Vahi; Li Zhao

This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid.


Journal of Geophysical Research | 2001

Resolution analysis of finite fault source inversion using one‐ and three‐dimensional Green's functions: 1. Strong motions

Robert W. Graves; David J. Wald

We develop a methodology to perform finite fault source inversions from strong motion data using Greens functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The 3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites and then recording the resulting strains along the target fault surface. Using reciprocity, these GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip distribution on the fault. The reciprocal formulation significantly reduces the required number of 3-D finite difference computations to at most 3NS, where NS is the number of strong motion sites used in the inversion. Using controlled numerical resolution tests, we have examined the relative importance of accurate GFs for finite fault source inversions which rely on near-source ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of the 1-D GF method when propagation effects are known to be three-dimensional. We find that given “data” from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the inversion provides very good resolution of the assumed slip distribution, thus adequately separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for increased resolution of the rupture process relative to 1-D GFs. However, realizing this full potential requires that the 3-D velocity model and associated GFs should be carefully validated against the true 3-D Earth structure before performing the inverse problem with actual data.


Journal of Geophysical Research | 2001

Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 2. : combining seismic and geodetic data

David J. Wald; Robert W. Graves

Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Greens functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments.


Earthquake Spectra | 2008

Model for Basin Effects on Long-Period Response Spectra in Southern California

Steven M. Day; Robert W. Graves; Jacobo Bielak; Douglas S. Dreger; Shawn Larsen; Kim B. Olsen; Arben Pitarka; Leonardo Ram'irez-Guzm'an

We propose a model for the effect of sedimentary basin depth on long-period response spectra. The model is based on the analysis of 3-D numerical simulations (finite element and finite difference) of long-period (2–10 s) ground motions for a suite of sixty scenario earthquakes (Mw 6.3 to Mw 7.1) within the Los Angeles basin region. We find depth to the 1.5 km/s S-wave velocity isosurface to be a suitable predictor variable, and also present alternative versions of the model based on depths to the 1.0 and 2.5 km/s isosurfaces. The resulting mean basin-depth effect is period dependent, and both smoother (as a function of period and depth) and higher in amplitude than predictions from local 1-D models. The main requirement for the use of the results in construction of attenuation relationships is determining the extent to which the basin effect, as defined and quantified in this study, is already accounted for implicitly in existing attenuation relationships, through (1) departures of the average “rock” site from our idealized reference model, and (2) correlation of basin depth with other predictor variables (such as Vs30).


Geophysical Research Letters | 2008

Broadband simulations for Mw 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed

Robert W. Graves; Brad T. Aagaard; Kenneth W. Hudnut; Lisa M. Star; Jonathan P. Stewart; Thomas H. Jordan

Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0–10 Hz) ground motions for three M_w 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes.


Seismological Research Letters | 2015

The 2014 Mw 6.1 South Napa earthquake : a unilateral rupture with shallow asperity and rapid afterslip

Shengji Wei; Sylvain Barbot; Robert W. Graves; James J. Lienkaemper; Teng Wang; Kenneth W. Hudnut; Yuning Fu; Donald V. Helmberger

The Mw 6.1 South Napa earthquake occurred near Napa, California, on 24 August 2014 at 10:20:44.03 (UTC) and was the largest inland earthquake in northern California since the 1989 Mw 6.9 Loma Prieta earthquake. The first report of the earthquake from the Northern California Earthquake Data Center (NCEDC) indicates a hypocentral depth of 11.0 km with longitude and latitude of (122.3105° W, 38.217° N). Surface rupture was documented by field observations and Light Detection and Ranging (LiDAR) imaging (Brooks et al., 2014; Hudnut et al., 2014; Brocher et al., 2015), with about 12 km of continuous rupture starting near the epicenter and extending to the northwest. The southern part of the rupture is relatively straight, but the strike changes by about 15° at the northern end over a 6 km segment. The peak dextral offset was observed near the Buhman residence with right‐lateral motion of 46 cm, near the location where the strike of fault begins to rotate clockwise (Hudnut et al., 2014). The earthquake was well recorded by the strong‐motion network operated by the NCEDC, the California Geological Survey and the U.S. Geological Survey (USGS). There are about 12 sites within an epicentral distance of 15 km that had relatively good azimuthal coverage (Fig. 1). The largest peak ground velocity (PGV) of nearly 100  cm/s was observed on station 1765, which is the closest station to the rupture and lies about 3 km east of the northern segment (Fig. 1). The ground deformation associated with the earthquake was also well recorded by the high resolution COSMO–SkyMed (CSK) satellite and Sentinel-1A satellite, providing independent static observations.

Collaboration


Dive into the Robert W. Graves's collaboration.

Top Co-Authors

Avatar

Thomas H. Jordan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Philip J. Maechling

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Arben Pitarka

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kim B. Olsen

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Brad T. Aagaard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Okaya

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Donald V. Helmberger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ewa Deelman

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge