Robert W. McNish
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert W. McNish.
Journal of Biological Chemistry | 1999
Thomas G. Brock; Robert W. McNish; Marc Peters-Golden
The two cyclooxygenase isoforms, cyclooxygenase-1 and cyclooxygenase-2, both metabolize arachidonic acid to prostaglandin H2, which is subsequently processed by downstream enzymes to the various prostanoids. In the present study, we asked if the two isoforms differ in the profile of prostanoids that ultimately arise from their action on arachidonic acid. Resident peritoneal macrophages contained only cyclooxygenase-1 and synthesized (from either endogenous or exogenous arachidonic acid) a balance of four major prostanoids: prostacyclin, thromboxane A2, prostaglandin D2, and 12-hydroxyheptadecatrienoic acid. Prostaglandin E2 was a minor fifth product, although these cells efficiently converted exogenous prostaglandin H2 to prostaglandin E2. By contrast, induction of cyclooxygenase-2 with lipopol- ysaccharide resulted in the preferential production of prostacyclin and prostaglandin E2. This shift in product profile was accentuated if cyclooxygenase-1 was permanently inactivated with aspirin before cyclooxygenase-2 induction. The conversion of exogenous prostaglandin H2 to prostaglandin E2 was only modestly increased by lipopolysaccharide treatment. Thus, cyclooxygenase-2 induction leads to a shift in arachidonic acid metabolism from the production of several prostanoids with diverse effects as mediated by cyclooxygenase-1 to the preferential synthesis of two prostanoids, prostacyclin and prostaglandin E2, which evoke common effects at the cellular level.
Journal of Biological Chemistry | 1995
Thomas G. Brock; Robert W. McNish; Marc Peters-Golden
Leukotriene (LT) synthesis involves the translocation of enzymatically active 5-lipoxygenase (5-LO) from a soluble site to a bound site, where it interacts with 5-lipoxygenase-activating protein (FLAP). In human polymorphonuclear leukocytes (PMNs), 5-LO moves from the cytosol to the nuclear envelope (NE) to interact with FLAP. However, 5-LO has recently been found within the nucleus, as well as the cytosol, of rat basophilic leukemia (RBL) cells and alveolar macrophages (AMs). To assess whether nuclear 5-LO can contribute to LT synthesis in these cells, we investigated whether this enzyme pool 1) translocates upon cell activation, 2) co-localizes with FLAP, and 3) is enzymatically active. By cell fractionation followed by immunoblotting, both cytosolic and nuclear soluble 5-LO decreased dramatically in RBL cells following activation with the calcium ionophore A23187. Concurrently, 5-LO increased in the pelletable nuclear pool, where FLAP was also detected. The loss of both cytosolic and nuclear soluble 5-LO, with concomitant increase exclusively at the NE, as well as co-localization with FLAP, were confirmed by indirect immunofluorescent and confocal microscopy. In AMs, the nuclear soluble pool of 5-LO moved to the NE, where FLAP was also found; however, the cytosolic 5-LO pool did not translocate. Application of these methods to PMNs confirmed that cytosolic 5-LO moved to the nuclear envelope and co-localized with FLAP. By cell-free assay, nuclear soluble proteins from both RBL cells and AMs, but not PMNs, were able to generate 5-LO products from arachidonate, and this was inhibited by the direct 5-LO inhibitor zileuton. Cytosolic proteins from all cell types also showed cell-free 5-LO activity. These results demonstrate three distinct patterns of 5-LO translocation that are specific for each cell type: translocation of only a cytosolic pool in PMNs, of only a nuclear pool in AMs, and of both cytosolic and nuclear pools in RBL cells. By virtue of its enzymatic activity and ability to translocate, nuclear 5-LO has the potential to contribute to LT synthesis in RBL cells and AMs. Finally, these results provide a foundation for considering the individual functions of discrete pools of 5-LO in future studies.
Journal of Biological Chemistry | 1997
Thomas G. Brock; Robert W. McNish; Marc B. Bailie; Marc Peters-Golden
5-Lipoxygenase catalyzes the synthesis of leukotrienes from arachidonic acid. The subcellular distribution of 5-lipoxygenase is known to be cell type-dependent and is cytosolic in blood neutrophils. In this study, we asked whether neutrophil recruitment into sites of inflammation can alter the subcellular compartmentation of 5-lipoxygenase. In peripheral blood neutrophils from rats, 5-lipoxygenase was exclusively cytosolic, as expected. However, in glycogen-elicited peritoneal neutrophils, abundant soluble 5-lipoxygenase was in the nucleus. Upon activation with calcium ionophore A23187, intranuclear 5-lipoxygenase translocated to the nuclear envelope. Elicited neutrophils required a greater concentration of A23187 for activation than did blood neutrophils (half-maximal response, 160 versus 52 nM, respectively) but generated greater amounts of leukotriene B4 upon maximal stimulation (26.6 versus 7.68 ng/106 cells, respectively). Intranuclear 5-lipoxygenase was also evident in human blood neutrophils after adherence to a variety of surfaces, suggesting that adherence alone is sufficient to drive 5-lipoxygenase redistribution. These results demonstrate a physiologically relevant circumstance in which the subcellular distribution of 5-lipoxygenase can be rapidly altered in resting cells, independent of 5-lipoxygenase activation. Nuclear import of 5-lipoxygenase may be a universal accompaniment of neutrophil recruitment into sites of inflammation, and this may be associated with alterations in enzymatic function.
Mechanisms of Ageing and Development | 2001
Peter Mancuso; Robert W. McNish; Marc Peters-Golden; Thomas G. Brock
The incidence of infectious respiratory diseases increases with aging. Resident alveolar macrophages (AMs) and recruited leukocytes (PMNL) mediate cellular defense against bacterial infections in the lung, and phagocytosis and lipid mediator synthesis are important components of their antimicrobial capacity. The objective of this study was to determine if either phagocytic capacity or lipid mediator generation declines with normal aging, in either AMs or PMNL recruited to a site of inflammation. The F344xBN rat hybrid has a lower incidence of pathologies associated with aging, particularly up to 20 months; animals aged 6,12 and 18 months were chosen to evaluate changes associated with normal aging. As previously reported for peripheral blood leukocytes, phagocytosis by recruited PMNL declined with aging: recruited PMNL from 18 months rats showed a significantly decreased capacity to phagocytose live Klebsiella pneumoniae bacteria, compared to PMNL from 6 months rats. Surprisingly, however, the phagocytic capacity of AMs increased with aging: the phagocytic index of AMs from 18 months rats was more than three times that of AMs from 6 months rats. The capacity of AMs and recruited PMNL to release arachidonic acid or synthesize leukotrienes or prostaglandins did not change with aging. This study demonstrates that, although phagocytosis by recruited PMNL declines with aging, other aspects of immune function do not decline, and may actually increase, with normal aging. These results suggest that impaired phagocytosis by recruited PMNL may be an important component of the increased susceptibility to infectious respiratory diseases during normal aging.
Prostaglandins & Other Lipid Mediators | 2003
Thomas G. Brock; Robert W. McNish; Peter Mancuso; Michael J. Coffey; Marc Peters-Golden
Resident rat peritoneal macrophages synthesize a variety of prostanoids and leukotrienes from arachidonic acid. Overnight treatment with lipopolysaccharide (LPS) induces the synthesis of cyclooxygenase-2 (COX-2) and an altered prostanoid profile that emphasizes the preferential conversion of arachidonic acid to prostacyclin and prostaglandin E2. In these studies, we report that exposure to LPS also caused a strong suppression of 5-lipoxygenase but not 12-lipoxygenase activity, indicated by the inhibition of synthesis of both leukotriene B4 and 5-hydroxyeicosatetraenoic acid (5-HETE), but not of 12-HETE. Inhibition of 5-lipoxygenase activity by LPS was both time- and dose-dependent. Treatment of macrophages with prostaglandin E2 partially inhibited leukotriene synthesis, and cyclooxygenase inhibitors partially blocked the inhibition of leukotriene generation in LPS-treated cells. In addition to COX-2, nitric oxide synthase (NOS) was also induced by LPS. Treatment of macrophages with an NO donor mimicked the ability of LPS to significantly reduce leukotriene B4 synthesis. Inhibition of NOS activity in LPS-treated cells blunted the suppression of leukotriene synthesis. Inhibition of both inducible NOS and COX completely eliminated leukotriene suppression. Finally, macrophages exposed to prolonged LPS demonstrated impaired killing of Klebsiella pneumoniae and the combination of NOS and COX inhibitors restored killing to the control level. These results indicate that prolonged exposure to LPS severely inhibits leukotriene production via the combined action of COX and NOS products. The shift in mediator profile, to one that minimizes leukotrienes and emphasizes prostacyclin, prostaglandin E2 and NO, provides a signal that reduces leukocyte function, as indicated by impaired killing of Gram-negative bacteria.
Food Chemistry | 2015
Ara Kirakosyan; E. Mitchell Seymour; Janet Wolforth; Robert W. McNish; Peter B. Kaufman; Steven F. Bolling
Our aim was to confirm and identify the presence of tart cherry anthocyanins in several target tissues of healthy rats. Liquid chromatography-mass spectrometry analysis was employed for detection and characterisation of anthocyanin metabolites. It was shown that four native anthocyanins, namely cyanidin 3-glucosylrutinoside, cyanidin 3-rutinoside, cyanidin 3-rutinoside 5-β-D-glucoside, and peonidin 3-rutinoside were differentially distributed among targeted tissues of rats. Bladder and kidney contained more total anthocyanins than all other tissues analysed. It was also revealed that the bioavailability pattern of these native anthocyanins among tissues is varied. The highest concentration of individual anthocyanin cyanidin 3-glucosylrutinoside (2339 picograms/gram of tissue) was detected in bladder, followed by cyanidin 3-rutinoside 5-β-d-glucoside (916 picograms/gram) in the liver of rats. Although the diverse distribution of tart cherry anthocyanins in different rat tissues still requires further explanation, it may provide an evidentiary link between tissue bioavailability and health-enhancing properties of anthocyanins at target sites.
Biochemical and Biophysical Research Communications | 1993
Marc Peters-Golden; Robert W. McNish
Journal of Immunology | 1990
Marc Peters-Golden; Robert W. McNish; Robert C. Hyzy; Candace Shelly; Galen B. Toews
Journal of Biological Chemistry | 2001
Thomas G. Brock; Elana Maydanski; Robert W. McNish; Marc Peters-Golden
Journal of Immunology | 1996
Thomas G. Brock; Robert W. McNish; Michael J. Coffey; Tammy Clark Ojo; Susan M. Phare; Marc Peters-Golden