Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Meredith is active.

Publication


Featured researches published by Robert W. Meredith.


Science | 2014

Comparative genomics reveals insights into avian genome evolution and adaptation

Guojie Zhang; Cai Li; Qiye Li; Bo Li; Denis M. Larkin; Chul Hee Lee; Jay F. Storz; Agostinho Antunes; Matthew J. Greenwold; Robert W. Meredith; Qi Zhou; Luohao Xu; Zongji Wang; Pei Zhang; Haofu Hu; Wei Yang; Jiang Hu; Jin Xiao; Zhikai Yang; Yang Liu; Qiaolin Xie; Hao Yu; Jinmin Lian; Ping Wen; Fang Zhang; Hui Li; Yongli Zeng; Zijun Xiong; Shiping Liu; Zhiyong Huang

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.


Proceedings of the Royal Society of London B: Biological Sciences | 2015

Convergent evolution of alternative developmental trajectories associated with diapause in African and South American killifish

Andrew I. Furness; David N. Reznick; Mark S. Springer; Robert W. Meredith

Annual killifish adapted to life in seasonally ephemeral water-bodies exhibit desiccation resistant eggs that can undergo diapause, a period of developmental arrest, enabling them to traverse the otherwise inhospitable dry season. Environmental cues that potentially indicate the season can govern whether eggs enter a stage of diapause mid-way through development or skip this diapause and instead undergo direct development. We report, based on construction of a supermatrix phylogenetic tree of the order Cyprinodontiformes and a battery of comparative analyses, that the ability to produce diapause eggs evolved independently at least six times within African and South American killifish. We then show in species representative of these lineages that embryos entering diapause display significant reduction in development of the cranial region and circulatory system relative to direct-developing embryos. This divergence along alternative developmental pathways begins mid-way through development, well before diapause is entered, during a period of purported maximum developmental constraint (the phylotypic period). Finally, we show that entering diapause is accompanied by a dramatic reduction in metabolic rate and concomitant increase in long-term embryo survival. Morphological divergence during the phylotypic period thus allows embryos undergoing diapause to conserve energy by shunting resources away from energetically costly organs thereby increasing survival chances in an environment that necessitates remaining dormant, buried in the soil and surrounded by an eggshell for much of the year. Our results indicate that adaptation to seasonal aquatic environments in annual killifish imposes strong selection during the embryo stage leading to marked diversification during this otherwise conserved period of vertebrate development.


Science | 2014

Evidence for a single loss of mineralized teeth in the common avian ancestor

Robert W. Meredith; Guojie Zhang; M. Thomas P. Gilbert; Erich D. Jarvis; Mark S. Springer

INTRODUCTION The absence of teeth or edentulism has evolved on multiple occasions within vertebrates, including birds, turtles, and a few groups of mammals (anteaters, baleen whales, and pangolins). There are also mammals with enamelless teeth (aardvarks, sloths, and armadillos). All toothless/enamelless vertebrates are descended from ancestors with enamel-capped teeth. In the case of birds, it is theropod dinosaurs. Instead of teeth, modern birds use a horny beak (rhamphotheca) and part of their digestive tract (muscular gizzard) to grind up and process food. The fossil record of early birds is fragmentary, and it is unclear whether tooth loss evolved in the common ancestor of all modern birds or convergently in two or more independent lineages. Observed shared inactivating mutations in tooth formation. Related genes were mapped onto a time tree depicting evolutionary relationships and times of divergence between modern birds, the closely related extinct taxon Ichthyornis, and the American alligator. The hypothesized loss of mineralized teeth on the modern bird branch at 116 million years ago (Ma) is based on frameshift mutation rates. Observed shared inactivating mutations in tooth formation. Related genes were mapped onto a time tree depicting evolutionary relationships and times of divergence between modern birds, the closely related extinct taxon Ichthyornis, and the American alligator. The hypothesized loss of mineralized teeth on the modern bird branch at 116 million years ago (Ma) is based on frameshift mutation rates. RATIONALE Tooth formation in vertebrates is a complicated process that involves many different genes. Of these genes, six are essential for the proper formation of dentin (DSPP) and enamel (AMTN, AMBN, ENAM, AMELX, and MMP20). We examined these six genes in the genomes of 48 bird species, which represent nearly all living bird orders, as well as the American alligator, a representative of Crocodylia (the closest living relatives of birds), for the presence of inactivating mutations that are shared by all 48 birds. The presence of such shared mutations in dentin and enamel-related genes would suggest a single loss of mineralized teeth in the common ancestor of all living birds. We also queried the genomes of additional toothless/enamelless vertebrates, including three turtles and four mammals, for inactivating mutations in these genes. For comparison, we looked at the genomes of mammalian taxa with enamel-capped teeth. RESULTS All edentulous vertebrate genomes that were examined are characterized by inactivating mutations in DSPP, AMBN, AMELX, AMTN, ENAM, and MMP20, rendering these genes nonfunctional. The dentin-related gene DSPP is functional in vertebrates with enamelless teeth (sloth, aardvark, and armadillo). All six genes are functional in the American alligator and mammalian taxa with enamel-capped teeth. More important, 48 bird species share inactivating mutations in both dentin-related (DSPP) and enamel-related genes (ENAM, AMELX, AMTN, and MMP20), indicating that the genetic machinery necessary for tooth formation was lost in the common ancestor of all modern birds. Furthermore, the frameshift mutation rate in birds suggests that the outer enamel covering of teeth was lost about 116 million years ago. CONCLUSIONS We postulate, on the basis of fossil and molecular evidence, a two-step scenario whereby tooth loss and beak development evolved together in the common ancestor of all modern birds. In the first stage, tooth loss and partial beak development commenced on the anterior portion of both the upper and lower jaws. The second stage involved concurrent progression of tooth loss and beak development from the anterior portion of both jaws to the back of the rostrum. We propose that this progression ultimately resulted in a complete horny beak that effectively replaced the teeth and may have contributed to the diversification of living birds. Edentulism, the absence of teeth, has evolved convergently among vertebrates, including birds, turtles, and several lineages of mammals. Instead of teeth, modern birds (Neornithes) use a horny beak (rhamphotheca) and a muscular gizzard to acquire and process food. We performed comparative genomic analyses representing lineages of nearly all extant bird orders and recovered shared, inactivating mutations within genes expressed in both the enamel and dentin of teeth of other vertebrate species, indicating that the common ancestor of modern birds lacked mineralized teeth. We estimate that tooth loss, or at least the loss of enamel caps that provide the outer layer of mineralized teeth, occurred about 116 million years ago.


Science | 2013

Technical Comment on "The Placental Mammal Ancestor and the Post-K-Pg Radiation of Placentals"

Mark S. Springer; Robert W. Meredith; Emma C. Teeling; William J. Murphy

O’Leary et al. (Research Article, 8 February 2013, p. 662) examined mammalian relationships and divergence times and concluded that a single placental ancestor crossed the Cretaceous-Paleogene (K-Pg) boundary. This conclusion relies on phylogenetic analyses that fail to discriminate between homology and homoplasy and further implies virus-like rates of nucleotide substitution in early Paleocene placentals.


Molecular Phylogenetics and Evolution | 2015

Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia.

Mark S. Springer; Anthony V. Signore; Johanna L. A. Paijmans; Jorge Velez-Juarbe; Daryl P. Domning; Cameron E. Bauer; Kai He; Lorelei Crerar; Paula F. Campos; William J. Murphy; Robert W. Meredith; John Gatesy; Ross D. E. MacPhee; Michael Hofreiter; Kevin L. Campbell

The recently extinct (ca. 1768) Stellers sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean=98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Stellers sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans.


Molecular Phylogenetics and Evolution | 2017

Waking the undead: Implications of a soft explosive model for the timing of placental mammal diversification

Mark S. Springer; Christopher A. Emerling; Robert W. Meredith; Jan E. Janecka; Eduardo Eizirik; William J. Murphy

The explosive, long fuse, and short fuse models represent competing hypotheses for the timing of placental mammal diversification. Support for the explosive model, which posits both interordinal and intraordinal diversification after the KPg mass extinction, derives from morphological cladistic studies that place Cretaceous eutherians outside of crown Placentalia. By contrast, most molecular studies favor the long fuse model wherein interordinal cladogenesis occurred in the Cretaceous followed by intraordinal cladogenesis after the KPg boundary. Phillips (2016) proposed a soft explosive model that allows for the emergence of a few lineages (Xenarthra, Afrotheria, Euarchontoglires, Laurasiatheria) in the Cretaceous, but otherwise agrees with the explosive model in positing the majority of interordinal diversification after the KPg mass extinction. Phillips (2016) argues that rate transference errors associated with large body size and long lifespan have inflated previous estimates of interordinal divergence times, and further suggests that most interordinal divergences are positioned after the KPg boundary when rate transference errors are avoided through the elimination of calibrations in large-bodied and/or long lifespan clades. Here, we show that rate transference errors can also occur in the opposite direction and drag forward estimated divergence dates when calibrations in large-bodied/long lifespan clades are omitted. This dragging forward effect results in the occurrence of more than half a billion years of zombie lineages on Phillips preferred timetree. By contrast with ghost lineages, which are a logical byproduct of an incomplete fossil record, zombie lineages occur when estimated divergence dates are younger than the minimum age of the oldest crown fossils. We also present the results of new timetree analyses that address the rate transference problem highlighted by Phillips (2016) by deleting taxa that exceed thresholds for body size and lifespan. These analyses recover all interordinal divergence times in the Cretaceous and are consistent with the long fuse model of placental diversification. Finally, we outline potential problems with morphological cladistic analyses of higher-level relationships among placental mammals that may account for the perceived discrepancies between molecular and paleontological estimates of placental divergence times.


Cladistics | 2017

Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family-level tree for Mammalia

John Gatesy; Robert W. Meredith; Jan E. Janecka; Mark P. Simmons; William J. Murphy; Mark S. Springer

Recent phylogenetic analyses of a large dataset for mammalian families (169 taxa, 26 loci) portray contrasting results. Supermatrix (concatenation) methods support a generally robust tree with only a few inconsistently resolved polytomies, whereas MP‐EST coalescence analysis of the same dataset yields a weakly supported tree that conflicts with many traditionally recognized clades. Here, we evaluate this discrepancy via improved coalescence analyses with reference to the rich history of phylogenetic studies on mammals. This integration clearly demonstrates that both supermatrix and coalescence analyses of just 26 loci yield a congruent, well‐supported phylogenetic hypothesis for Mammalia. Discrepancies between published studies are explained by implementation of overly simple DNA substitution models, inadequate tree‐search routines and limitations of the MP‐EST method. We develop a simple measure, partitioned coalescence support (PCS), which summarizes the distribution of support and conflict among gene trees for a given clade. Extremely high PCS scores for outlier gene trees at two nodes in the mammalian tree indicate a troubling bias in the MP‐EST method. We conclude that in this age of phylogenomics, a solid understanding of systematics fundamentals, choice of valid methodology and a broad knowledge of a clades taxonomic history are still required to yield coherent phylogenetic inferences.


Molecular Ecology | 2016

Diet assessment of the Atlantic Sea Nettle Chrysaora quinquecirrha in Barnegat Bay, New Jersey, using next-generation sequencing

Robert W. Meredith; John J. Gaynor; Paul A. X. Bologna

Next‐generation sequencing (NGS) methodologies have proven useful in deciphering the food items of generalist predators, but have yet to be applied to gelatinous animal gut and tentacle content. NGS can potentially supplement traditional methods of visual identification. Chrysaora quinquecirrha (Atlantic sea nettle) has progressively become more abundant in Mid‐Atlantic United States’ estuaries including Barnegat Bay (New Jersey), potentially having detrimental effects on both marine organisms and human enterprises. Full characterization of this predators diet is essential for a comprehensive understanding of its impact on the food web and its management. Here, we tested the efficacy of NGS for prey item determination in the Atlantic sea nettle. We implemented a NGS ‘shotgun’ approach to randomly sequence DNA fragments isolated from gut lavages and gastric pouch/tentacle picks of eight and 84 sea nettles, respectively. These results were verified by visual identification and co‐occurring plankton tows. Over 550 000 contigs were assembled from ~110 million paired‐end reads. Of these, 100 contigs were confidently assigned to 23 different taxa, including soft‐bodied organisms previously undocumented as prey species, including copepods, fish, ctenophores, anemones, amphipods, barnacles, shrimp, polychaete worms, flukes, flatworms, echinoderms, gastropods, bivalves and hemichordates. Our results not only indicate that a ‘shotgun’ NGS approach can supplement visual identification methods, but targeted enrichment of a specific amplicon/gene is not a prerequisite for identifying Atlantic sea nettle prey items.


Archive | 2014

Comparative Genomics Across Modern Bird Species Reveal Insights into Pan- avian Genome evolution and Trait Biodiversity

Guojie Zhang; Cai Li; Qiye Li; Bo Li; Denis M. Larkin; Chul Hee Lee; Jay F. Storz; Agostinho Antunes; Robert W. Meredith; Jie Cui; Qi Zhou; Luohao Xu; Hailin Pan; Zongji Wang; Lijun Jin; Pei Zhang; Haofu Hu; Wei Yang; Jiang Hu; Jin Xiao; Zhikai Yang; Yang Liu; Qiaolin Xie; Jinmin Lian; Ping Wen; Fang Zhang; Hui Li; Zijun Xiong; Shiping Liu; Long Zhou


Aquatic Botany | 2015

Clonal diversity and connectedness of turtle grass (Thalassia testudinum) populations in a UNESCO Biosphere Reserve

James J. Campanella; Paul A. X. Bologna; Maria Carvalho; John V. Smalley; Mohamedhakim Elakhrass; Robert W. Meredith; Nadia Zaben

Collaboration


Dive into the Robert W. Meredith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Gatesy

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guojie Zhang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Bo Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay F. Storz

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

John J. Gaynor

Montclair State University

View shared research outputs
Top Co-Authors

Avatar

Jorge Velez-Juarbe

Natural History Museum of Los Angeles County

View shared research outputs
Researchain Logo
Decentralizing Knowledge