Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Schwenk is active.

Publication


Featured researches published by Robert W. Schwenk.


Cardiovascular Research | 2008

Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease

Robert W. Schwenk; Joost J. F. P. Luiken; Arend Bonen; Jan F. C. Glatz

Circulating long-chain fatty acids (LCFA) and glucose are the main sources for energy production in the heart. In the healthy heart the ratio of glucose and LCFA oxidation is sensitively balanced and chronic alterations in this substrate mix are closely associated with cardiac dysfunction. While it has been accepted for several years that cardiac glucose uptake is mediated by facilitated transport, i.e. by means of the glucose transport proteins GLUT1 and GLUT4, only in the last few years it has become clear that proteins with high-affinity binding sites to LCFA, referred to as LCFA transporters, are responsible for bulk LCFA uptake. Similar to the GLUTs, the LCFA transporters CD36 and FABP(pm) can be recruited from an intracellular storage compartment to the sarcolemma to increase the rate of substrate uptake. Permanent relocation of LCFA transporters, mainly CD36, from intracellular stores to the sarcolemma is accompanied by accumulation of lipids and lipid metabolites in the heart. As a consequence, insulin signalling and glucose utilization are impaired, leading to decreased contractile activity of the heart. These observations underline the particular role and interplay of substrate carriers for glucose and LCFA in modulating cardiac metabolism, and the development of heart failure. The signalling and trafficking pathways and subcellular machinery regulating translocation of glucose and LCFA transporters are beginning to be unravelled. More knowledge on substrate transporter recycling, especially the similarities and differences between glucose and LCFA transporters, is expected to enable novel therapies aimed at changing the subcellular distribution of glucose and LCFA transporters, thereby manipulating the substrate preference of the diseased heart to help restore cardiac function.


Diabetologia | 2010

Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes

Robert W. Schwenk; Ellen Dirkx; Will A. Coumans; Arend Bonen; A. Klip; J.F.C. Glatz; Joost J. F. P. Luiken

Aims/hypothesisUpon stimulation of insulin signalling or contraction-induced AMP-activated protein kinase (AMPK) activation, the glucose transporter GLUT4 and the long-chain fatty acid (LCFA) transporter CD36 similarly translocate from intracellular compartments to the plasma membrane of cardiomyocytes to increase uptake of glucose and LCFA, respectively. This similarity in regulation of GLUT4 traffic and CD36 traffic suggests that the same families of trafficking proteins, including vesicle-associated membrane proteins (VAMPs), are involved in both processes. While several VAMPs have been implicated in GLUT4 traffic, nothing is known about the putative function of VAMPs in CD36 traffic. Therefore, we compared the involvement of the myocardially produced VAMP isoforms in insulin- or contraction-induced GLUT4 and CD36 translocation.MethodsFive VAMP isoforms were silenced in HL-1 cardiomyocytes. The cells were treated with insulin or the contraction-like AMPK activator oligomycin or were electrically stimulated to contract. Subsequently, GLUT4 and CD36 translocation as well as substrate uptake were measured.ResultsThree VAMPs were demonstrated to be necessary for both GLUT4 and CD36 translocation, either specifically in insulin-treated cells (VAMP2, VAMP5) or in oligomycin/contraction-treated cells (VAMP3). In addition, there are VAMPs specifically involved in either GLUT4 traffic (VAMP7 mediates basal GLUT4 retention) or CD36 traffic (VAMP4 mediates insulin- and oligomycin/contraction-induced CD36 translocation).Conclusions/interpretationThe involvement of distinct VAMP isoforms in both GLUT4 and CD36 translocation indicates that CD36 translocation, just like GLUT4 translocation, is a vesicle-mediated process dependent on soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. The ability of other VAMPs to discriminate between GLUT4 and CD36 translocation allows the notion that myocardial substrate preference can be modulated by these VAMPs.


FEBS Letters | 2009

Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6

Swati S. Jain; Adrian Chabowski; Laelie A. Snook; Robert W. Schwenk; Jan F. C. Glatz; Joost J. F. P. Luiken; Arend Bonen

Insulin and muscle contraction increase fatty acid transport into muscle by inducing the translocation of FAT/CD36. We examined (a) whether these effects are additive, and (b) whether other fatty acid transporters (FABPpm, FATP1, FATP4, and FATP6) are also induced to translocate. Insulin and muscle contraction increased glucose transport and plasmalemmal GLUT4 independently and additively (positive control). Palmitate transport was also stimulated independently and additively by insulin and by muscle contraction. Insulin and muscle contraction increased plasmalemmal FAT/CD36, FABPpm, FATP1, and FATP4, but not FATP6. Only FAT/CD36 and FATP1 were stimulated in an additive manner by insulin and by muscle contraction.


Molecular metabolism | 2013

Genetic and epigenetic control of metabolic health

Robert W. Schwenk; Heike Vogel; Annette Schürmann

Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wide association studies (GWAS) are linked with obesity and T2D, each accounting for only a small proportion of the predicted heritability. However, the percentage of overall trait variance explained by these associated loci is modest (~5-10% for T2D, ~2% for BMI). The lack of powerful genetic associations suggests that heritability is not entirely attributable to gene variations. Some of the familial aggregation as well as many of the effects of environmental exposures, may reflect epigenetic processes. This review summarizes our current knowledge on the genetic basis to individual risk of obesity and T2D, and explores the potential role of epigenetic contribution.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2011

High fat diet induced diabetic cardiomyopathy

Ellen Dirkx; Robert W. Schwenk; Jan F. C. Glatz; Joost J. F. P. Luiken; Guillaume van Eys

In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.


Cellular and Molecular Life Sciences | 2011

Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes.

Laura K.M. Steinbusch; Robert W. Schwenk; D. Margriet Ouwens; Michaela Diamant; Jan F. C. Glatz; Joost J. F. P. Luiken

Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.


Biochemical Journal | 2009

Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates.

Joost J. F. P. Luiken; Hanneke Niessen; Susan L. Coort; Nicole Hoebers; Will A. Coumans; Robert W. Schwenk; Arend Bonen; Jan F. C. Glatz

Although CPT-I (carnitine palmitoyltransferase-I) is generally regarded to present a major rate-controlling site in mitochondrial beta-oxidation, it is incompletely understood whether CPT-I is rate-limiting in the overall LCFA (long-chain fatty acid) flux in the heart. Another important site of regulation of the LCFA flux in the heart is trans-sarcolemmal LCFA transport facilitated by CD36 and FABPpm (plasma membrane fatty acid-binding protein). Therefore, we explored to what extent a chronic pharmacological blockade of the LCFA flux at the level of mitochondrial entry of LCFA-CoA would affect sarcolemmal LCFA uptake. Rats were injected daily with saline or etomoxir, a specific CPT-I inhibitor, for 8 days at 20 mg/kg of body mass. Etomoxir-treated rats displayed a 44% reduced cardiac CPT-I activity. Sarcolemmal contents of CD36 and FABPpm, as well as the LCFA transport capacity, were not altered in the hearts of etomoxir-treated versus control rats. Furthermore, rates of LCFA uptake and oxidation, and glucose uptake by cardiac myocytes from etomoxir-treated rats were not different from control rats, neither under basal nor under acutely induced maximal metabolic demands. Finally, hearts from etomoxir-treated rats did not display triacylglycerol accumulation. Therefore CPT-I appears not to present a major rate-controlling site in total cardiac LCFA flux. It is likely that sarcolemmal LCFA entry rather than mitochondrial LCFA-CoA entry is a promising target for normalizing LCFA flux in cardiac metabolic diseases.


Biochimica et Biophysica Acta | 2015

Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice

Christian Baumeier; Daniel Kaiser; Jörg Heeren; Ludger Scheja; Clara John; Christoph Weise; Murat Eravci; Merit Lagerpusch; Gunnar Schulze; Hans-Georg Joost; Robert W. Schwenk; Annette Schürmann

Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species.


Hormone and Metabolic Research | 2013

Diet-dependent Alterations of Hepatic Scd1 Expression are Accompanied by Differences in Promoter Methylation

Robert W. Schwenk; Wenke Jonas; S. B. Ernst; Anne Kammel; Markus Jähnert; Annette Schürmann

Obesity and alterations of lipid homeostasis are hallmarks of the metabolic syndrome and largely influenced by the dietary conditions of the individual. Although heritability is considered to be a major risk factor, the almost 40 candidate genes identified by genome-wide association studies (GWAS) so far account for only 5-10% of the observed variance in BMI in human subjects. Alternatively, diet-induced changes of epigenetic gene regulation might be involved in disturbed lipid homeostasis and weight development. The aim of this study was to investigate how a high-carbohydrate diet (HCD; 70 kcal% from carbohydrates, 10 kcal% from fat) or a high-fat diet (HFD; 20 kcal% from carbohydrates, 60 kcal% from fat) affects hepatic expression of genes involved in fatty acid metabolism and if these alterations are correlated to changes in promoter methylation. Expression of stearoyl-CoA desaturase 1 (Scd1) was lower in livers from HFD-fed C57BL/6 J mice compared to HCD-fed animals and correlated inversely with the degree of DNA methylation at 2 distinct, adjacent CpG sites in the Scd1 promoter. In contrast, expression of transcription factors peroxisome proliferator activated receptor alpha and gamma (Ppara, Pparg), and sterol regulatory element binding transcription factor 1 (Srebf1) was not affected. The degree of hepatic Scd1 promoter methylation at these CpG sites correlated positively to fat mass and serum leptin levels, whereas serum ghrelin levels were inversely correlated with methylation at both CpG sites. Taken together, hepatic expression of Scd1 is differentially affected by carbohydrate- and lipid content of the diet. These differences in Scd1 expression are associated with altered promoter methylation, indicating that diets affect lipid metabolism in the liver via epigenetic mechanisms.


Journal of Endocrinology | 2009

Permissive action of protein kinase C-ζ in insulin-induced CD36- and GLUT4 translocation in cardiac myocytes

Joost J. F. P. Luiken; D. Margriet Ouwens; Daphna D. J. Habets; Gerard C.M. van der Zon; Will A. Coumans; Robert W. Schwenk; Arend Bonen; Jan F. C. Glatz

Insulin stimulates cardiac long-chain fatty acid (LCFA) and glucose uptake via translocation of human homolog of rat fatty acid translocase (CD36) and GLUT4 respectively, from intracellular membrane compartments to the sarcolemma, a process dependent on the activation of phosphatidylinositol-3 kinase. To identify downstream kinases of insulin signaling involved in translocation of CD36 and GLUT4 in the heart, we tested i) which cardiac protein kinase C (PKC) isoforms (alpha, delta, epsilon or zeta) are activated by insulin, and ii) whether PKC isoform-specific inhibition affects insulin-stimulated substrate uptake in the heart. Insulin-stimulated LCFA and glucose uptake were completely blunted by inhibition of PKC-zeta, but not by inhibition of conventional or novel PKCs. Concomitantly, translocation of CD36 and GLUT4 to the sarcolemma was completely blunted upon inhibition of PKC-zeta. However, insulin, in contrast to the diacylglycerol-analog phorbol-12-myristate-13-acetate (PMA), did not induce membrane-attachment of the conventional and novel PKCs-alpha, -delta, and -epsilon. PKC-zeta was already entirely membrane-bound in non-stimulated cells, and neither insulin nor PMA treatment had any effect on the subcellular localization of PKC-zeta. Furthermore, insulin treatment did not change phosphorylation of PKC-alpha, -delta, and -zeta or enzymatic activity of PKC-zeta towards a PKC-zeta substrate peptide. It is concluded that PKC-zeta, but not any other PKC isoform, is necessary for insulin-induced translocation of GLUT4 and CD36. However, PKC-zeta is already fully active under basal conditions and not further activated by insulin, indicating that its role in insulin-stimulated uptake of both glucose and LCFA is permissive rather than regulatory.

Collaboration


Dive into the Robert W. Schwenk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge