Robert W. Tilghman
University of Virginia Health System
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert W. Tilghman.
Journal of Biological Chemistry | 2007
Jill K. Slack-Davis; Karen H. Martin; Robert W. Tilghman; Marcin P. Iwanicki; Ethan Ung; Christopher Autry; Michael Joseph Luzzio; Beth Cooper; John Charles Kath; W. Gregory Roberts; J. Thomas Parsons
Focal adhesion kinase (FAK) is a member of a family of non-receptor protein-tyrosine kinases that regulates integrin and growth factor signaling pathways involved in cell migration, proliferation, and survival. FAK expression is increased in many cancers, including breast and prostate cancer. Here we describe perturbation of adhesion-mediated signaling with a FAK inhibitor, PF-573,228. In vitro, this compound inhibited purified recombinant catalytic fragment of FAK with an IC50 of 4 nm. In cultured cells, PF-573,228 inhibited FAK phosphorylation on Tyr397 with an IC50 of 30–100 nm. Treatment of cells with concentrations of PF-573,228 that significantly decreased FAK Tyr397 phosphorylation failed to inhibit cell growth or induce apoptosis. In contrast, treatment with PF-573,228 inhibited both chemotactic and haptotactic migration concomitant with the inhibition of focal adhesion turnover. These studies show that PF-573,228 serves as a useful tool to dissect the functions of FAK in integrin-dependent signaling pathways in normal and cancer cells and forms the basis for the generation of compounds amenable for preclinical and patient trials.
PLOS ONE | 2010
Robert W. Tilghman; Catharine R. Cowan; Justin D. Mih; Yulia Koryakina; Daniel Gioeli; Jill K. Slack-Davis; Brett R. Blackman; Daniel J. Tschumperlin; J. Thomas Parsons
Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.
Journal of Cell Science | 2005
Robert W. Tilghman; Jill K. Slack-Davis; Natalia Sergina; Karen H. Martin; Marcin P. Iwanicki; E. Daniel Hershey; Hilary E. Beggs; Louis F. Reichardt; J. Thomas Parsons
The process of cell migration is initiated by protrusion at the leading edge of the cell, the formation of peripheral adhesions, the exertion of force on these adhesions, and finally the release of the adhesions at the rear of the cell. Focal adhesion kinase (FAK) is intimately involved in the regulation of this process, although the precise mechanism(s) whereby FAK regulates cell migration is unclear. We have used two approaches to reduce FAK expression in fibroblasts. Treatment of cells with FAK-specific siRNAs substantially reduced FAK expression and inhibited the spreading of fibroblasts in serum-free conditions, but did not affect the rate of spreading in the presence of serum. In contrast with the wild-type cells, the FAK siRNA-treated cells exhibited multiple extensions during cell spreading. The extensions appeared to be inappropriately formed lamellipodia as evidenced by the localization of cortactin to lamellipodial structures and the inhibition of such structures by expression of dominant-negative Rac. The wild-type phenotype was restored by reexpressing wild-type FAK in the knockdown cells, but not by expression of FAK containing a point mutation at the autophosphorylation site (FAK Y397F). In wound-healing assays, FAK knockdown cells failed to form broad lamellipodia, instead forming multiple leading edges. Similar results were obtained using primary mouse embryo fibroblasts from FAK-flox mice in which Cre-mediated excision was used to ablate the expression of FAK. These data are consistent with a role for FAK in regulating the formation of a leading edge during cell migration by coordinating integrin signaling to direct the correct spatial activation of membrane protrusion.
Clinical Cancer Research | 2008
J. Thomas Parsons; Jill K. Slack-Davis; Robert W. Tilghman; W. Gregory Roberts
The tumor microenvironment plays a central role in cancer progression and metastasis. Within this environment, cancer cells respond to a host of signals including growth factors and chemotactic factors, as well as signals from adjacent cells, cells in the surrounding stroma, and signals from the extracellular matrix. Targeting the pathways that mediate many of these signals has been a major goal in the effort to develop therapeutics.
Molecular Cancer Therapeutics | 2011
Jayme B. Stokes; Sara J. Adair; Jill K. Slack-Davis; Dustin M. Walters; Robert W. Tilghman; E. Daniel Hershey; Bryce Lowrey; Keena S. Thomas; Amy H. Bouton; Rosa F. Hwang; Edward B. Stelow; J. Thomas Parsons; Todd W. Bauer
Current therapies for pancreatic ductal adenocarcinoma (PDA) target individual tumor cells. Focal adhesion kinase (FAK) is activated in PDA, and levels are inversely associated with survival. We investigated the effects of PF-562,271 (a small-molecule inhibitor of FAK/PYK2) on (i) in vitro migration, invasion, and proliferation; (ii) tumor proliferation, invasion, and metastasis in a murine model; and (iii) stromal cell composition in the PDA microenvironment. Migration assays were conducted to assess tumor and stromal cell migration in response to cellular factors, collagen, and the effects of PF-562,271. An orthotopic murine model was used to assess the effects of PF-562,271 on tumor growth, invasion, and metastasis. Proliferation assays measured PF-562,271 effects on in vitro growth. Immunohistochemistry was used to examine the effects of FAK inhibition on the cellular composition of the tumor microenvironment. FAK and PYK2 were activated and expressed in patient-derived PDA tumors, stromal components, and human PDA cell lines. PF-562,271 blocked phosphorylation of FAK (phospho-FAK or Y397) in a dose-dependent manner. PF-562,271 inhibited migration of tumor cells, cancer-associated fibroblasts, and macrophages. Treatment of mice with PF-562,271 resulted in reduced tumor growth, invasion, and metastases. PF-562,271 had no effect on tumor necrosis, angiogenesis, or apoptosis, but it did decrease tumor cell proliferation and resulted in fewer tumor-associated macrophages and fibroblasts than control or gemcitabine. These data support a role for FAK in PDA and suggest that inhibitors of FAK may contribute to efficacious treatment of patients with PDA. Mol Cancer Ther; 10(11); 2135–45. ©2011 AACR.
Journal of Cell Science | 2008
Marcin P. Iwanicki; Tomáš Vomastek; Robert W. Tilghman; Karen H. Martin; Jayashree Banerjee; Philip B. Wedegaertner; J. Thomas Parsons
A key step in cell migration is the dynamic formation and disassembly of adhesions at the front and the concomitant movement and release of adhesions in the rear of the cell. Fibroblasts maintained in the absence of serum have stable adhesions within the rear of the cell and exhibit reduced trailing-edge retraction resulting in an elongated cell phenotype. Addition of lysophosphatidic acid (LPA) induced the movement of adhesions and retraction of the trailing edge, thus mimicking tail retraction in a migrating cell. Focal adhesion kinase (FAK), guanine nucleotide exchange factors (GEF) for Rho and the Rho effector Rho kinase II (ROCKII) are crucial for the regulation of adhesion movement and trailing-edge retraction. Downregulation of FAK by small interfering RNAs or small hairpin RNAs blocked LPA-induced adhesion movement and restoration of cell shape. This phenotype was rescued by the ectopic expression of PDZ-RhoGEF or a RhoA-effector-domain mutant that activates ROCK. Knockdown of PDZ-RhoGEF or ROCKII inhibited LPA-induced trailing-edge retraction and adhesion movement. Moreover, overexpressed PDZ-RhoGEF co-immunoprecipitated with FAK and localized to FAK-containing adhesions. These studies support a model in which FAK and PDZ-RhoGEF cooperate to induce Rho/ROCKII-dependent focal adhesion movement and trailing-edge retraction in response to LPA.
PLOS ONE | 2011
Katherine A. Owen; Michelle Y. Abshire; Robert W. Tilghman; James E. Casanova; Amy H. Bouton
Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1.
PLOS ONE | 2012
Robert W. Tilghman; Edik M. Blais; Catharine R. Cowan; Nicholas E. Sherman; Pablo R. Grigera; Erin D. Jeffery; Jay W. Fox; Brett R. Blackman; Daniel J. Tschumperlin; Jason A. Papin; J. Thomas Parsons
Background Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.
Handbook of Cell Signaling (Second Edition) | 2010
J. Thomas Parsons; Jill K. Slack-Davis; Robert W. Tilghman; Marcin P. Iwanicki; Karen H. Martin
Publisher Summary Integrins are a family of heterodimeric, transmembrane receptors that mediate attachment of cells to the surrounding extracellular matrix (ECM). Integrins are responsible for sensing many aspects of the microenvironment, including the structure and composition of the ECM as well as biochemical signals generated following growth factor or cytokine stimulation. Integration of these complex signals contributes to the regulation of cellular migration, growth, and survival within an organism. A central function of integrins is to mediate a structural linkage between the dynamic intracellular cytoskeleton and the ECM that conveys both mechanical and chemical signals. Cell migration provides an exceptionally relevant model to study integrin signaling. Migration is a complex cellular process that involves the extension of lamellipodia; adhesion at sites within newly formed lamella, organization of force-generating adhesions, contraction and cell-body displacement, and detachment of the cell rear. The initial steps in cell migration require the formation of protrusive structures (lamellipodia) at the leading edge of the cell, and the stabilization of the protrusion by newly formed adhesion complexes. Cell proliferation is in dynamic balance with cell death. In cancer, increasing evidence indicates that integrins synergize with growth factor receptor signals to promote cell proliferation and to stimulate the migration of tumor cells from the primary site, and function to promote growth and survival at distant metastatic sites. Integrins play a major role in remodeling the tumor microenvironment, and are important regulators of migration and metastatic growth.
Journal of Clinical Oncology | 2013
James M. Lindberg; Sara J. Adair; Timothy E. Newhook; Robert W. Tilghman; J. Thomas Parsons; Todd W. Bauer
198 Background: Most pancreatic cancer patients will die following surgery due to recurrent metastatic disease. Thus, better systemic therapies are needed to treat occult metastases to improve survival. We have developed a model of occult liver metastasis from pancreatic cancer in order to evaluate novel treatment strategies. Methods: Pancreatic cancer cells (MAD 09-366, 08-608, MPanc96) transduced with green fluorescent protein (GFP) and luciferase were injected into the spleens of athymic, nude mice to generate hepatic metastases. Ninety-six hours after injection, tumor-bearing mice were treated with MEK1/2 inhibitor (trametinib, 0.3mg/kg, daily), gemcitabine (100mg/kg, twice weekly), or vehicle control. Sequential bioluminescence imaging, flow cytometry, and histologic evaluation were used to assess hepatic tumor growth and behavior. Results: All injected cell lines generated hepatic metastases. Different cell lines exhibited different growth kinetics. MPanc96 injected mice demonstrated a 64% decrease ...