Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Antonia Diotti is active.

Publication


Featured researches published by Roberta Antonia Diotti.


Journal of Medical Microbiology | 2008

Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies.

Nicasio Mancini; Daniela Clerici; Roberta Antonia Diotti; Mario Perotti; Nadia Ghidoli; Donata De Marco; Beatrice Pizzorno; Thomas Emrich; Roberto Burioni; Fabio Ciceri; Massimo Clementi

The rapid diagnosis of an infectious cause in the course of fever of unknown origin plays a pivotal role in the correct management of neutropenic patients. In this study, blood samples from febrile oncohaematological patients were tested using a novel commercial real-time PCR assay (LightCycler SeptiFast; Roche Molecular Systems) and blood culture (BacT/Alert 3D; bioMérieux). Twenty-one (20.4 %) and 34 (33 %) of the 103 samples under study tested positive by blood culture and PCR, respectively. The analysis of concordance evidenced a low correlation between the two approaches (83 %), mainly due to samples that tested negative by culture but positive using the molecular approach. Among 14 discordant cases negative by culture but positive by PCR, 12 were observed in sequential samples of patients with initial concordant results on samples drawn before the administration of a specific antimicrobial therapy. Moreover, DNA of a fastidious organism, Aspergillus fumigatus, not easily detectable by the cultural approach was rapidly detected in the two remaining discordant cases. Overall, the characteristics featured by the molecular method could be of interest in the development of new algorithms for the diagnosis of sepsis in critical patients.


Journal of Virology | 2008

Identification of a Broadly Cross-Reacting and Neutralizing Human Monoclonal Antibody Directed against the Hepatitis C Virus E2 Protein

Mario Perotti; Nicasio Mancini; Roberta Antonia Diotti; Alexander W. Tarr; Jonathan K. Ball; Ania M. Owsianka; Richard Adair; Arvind H. Patel; Massimo Clementi; Roberto Burioni

ABSTRACT Identification of anti-hepatitis C virus (anti-HCV) human antibody clones with broad neutralizing activity is important for a better understanding of the interplay between the virus and host and for the design of an effective passive immunotherapy and an effective vaccine. We report the identification of a human monoclonal Fab (e137) able to bind the HCV E2 glycoprotein of all HCV genotypes but genotype 5. The results of antibody competition assays and testing the reactivity to alanine mutant E2 proteins confirmed that the e137 epitope includes residues (T416, W420, W529, G530, and D535) highly conserved across all HCV genotypes. Fab e137 neutralized HCV pseudoparticles bearing genotype 1a, 1b, and 4 E1-E2 proteins and to a lesser extent, genotype 2b. Fab e137 was also able to inhibit cell culture-grown HCV (genotype 2a). These data indicate that broadly cross-reacting and cross-neutralizing antibodies are generated during HCV infection.


PLOS ONE | 2009

Hepatitis C Virus (HCV) Infection May Elicit Neutralizing Antibodies Targeting Epitopes Conserved in All Viral Genotypes

Nicasio Mancini; Roberta Antonia Diotti; Mario Perotti; Giuseppe Sautto; Nicola Clementi; Giovanni Nitti; Arvind H. Patel; Jonathan K. Ball; Massimo Clementi; Roberto Burioni

Anti-hepatitis C virus (HCV) cross-neutralizing human monoclonal antibodies, directed against conserved epitopes on surface E2 glycoprotein, are central tools for understanding virus-host interplay, and for planning strategies for prevention and treatment of this infection. Recently, we developed a research aimed at identifying these antibody specificities. The characteristics of one of these antibodies (Fab e20) were addressed in this study. Firstly, using immunofluorescence and FACS analysis of cells expressing envelope HCV glycoproteins, Fab e20 was able to recognize all HCV genotypes. Secondly, competition assays with a panel of mouse and rat monoclonals, and alanine scanning mutagenesis analyses located the e20 epitope within the CD81 binding site, documenting that three highly conserved HCV/E2 residues (W529, G530 and D535) are critical for e20 binding. Finally, a strong neutralizing activity against HCV pseudoparticles (HCVpp) incorporating envelope glycoproteins of genotypes 1a, 1b, 2a, 2b and 4, and against the cell culture-grown (HCVcc) JFH1 strain, was observed. The data highlight that neutralizing antibodies against HCV epitopes present in all HCV genotypes are elicited during natural infection. Their availability may open new avenues to the understanding of HCV persistence and to the development of strategies for the immune control of this infection.


Virology | 2010

Monoclonal antibodies isolated from human B cells neutralize a broad range of H1 subtype influenza A viruses including swine-origin Influenza virus (S-OIV)

Roberto Burioni; Filippo Canducci; Nicasio Mancini; Nicola Clementi; Monica Sassi; Donata De Marco; Roberta Antonia Diotti; Diego Saita; Michela Sampaolo; Giuseppe Sautto; Matteo Pianezze; Massimo Clementi

The new H1N1 swine-origin influenza virus (S-OIV) strain is a global health problem. The elucidation of the virus-host relationship is crucial for the control of the new infection. Two human monoclonal antibody Fab fragments (HMab) neutralizing the novel H1N1 influenza strain at very low concentrations were cloned before the emergence of S-OIV from a patient who had a broad-range H1N1 serum neutralizing activity. The two HMabs neutralized all tested H1N1 strains, including S-OIV and a swine strain with IC(50) ranging from 2 to 7 microg/ml. Data demonstrate that infection with previously circulating H1N1 strains can elicit antibodies neutralizing S-OIV. Finally, the human genes coding for the neutralizing HMabs could be used for generating full human monoclonal IgGs that can be safely administered being potentially useful in the prophylaxis and the treatment of this human infection.


Autoimmunity Reviews | 2008

Hepatitis C virus (HCV)-driven stimulation of subfamily-restricted natural IgM antibodies in mixed cryoglobulinemia

Mario Perotti; Nadia Ghidoli; Raffaele Altara; Roberta Antonia Diotti; Nicola Clementi; Donata De Marco; Monica Sassi; Massimo Clementi; Roberto Burioni; Nicasio Mancini

Hepatitis C virus (HCV) infection has been closely related to mixed cryoglobulinemia (MC). During HCV infection, cryoglobulins derive from the restricted expression of few germline genes as VH1-69, a subfamily highly represented in anti-HCV humoral response. Little is known about the self-reacting IgM component of the cryoprecipitate. In the present study, the IgM/K repertoire of an HCV-infected cryoglobulinemic patient was dissected by phage-display on well-characterized anti-HCV/E2 VH1-69-derived monoclonal IgG1/Kappa Fab fragments cloned from the same patient. All selected IgM clones were shown to react with the anti-HCV/E2 antibodies belonging to VH1-69 subfamily. More than 60% of selected clones showed a bias in VH gene usage, restricted to two VH subfamilies frequently described in autoimmune manifestations (VH3-23; VH3-21). Moreover, all selected clones showed an high similarity (>98.5%) to germline genes evidencing their natural origin. A possible hypothesis is that clones belonging to some subfamilies are naturally prone to react against other VH gene subfamilies, as VH 1-69. An antigen-driven stimulation of these subfamilies, and their overexpression as in HCV infection, could lead to a breaking of humoral homeostatic balance exposing the patients to the risk of developing autoimmune disorders.


Antiviral Research | 2012

Anti-hepatitis C virus E2 (HCV/E2) glycoprotein monoclonal antibodies and neutralization interference

Giuseppe Sautto; Nicasio Mancini; Roberta Antonia Diotti; Laura Solforosi; Massimo Clementi; Roberto Burioni

The suggested HCV escape mechanism consisting in the elicitation of antibody (Ab) subpopulations interfering with the neutralizing activity of other Abs has recently been questioned. In particular, it was originally reported that Abs directed against the 436-447 region (epitope II) of HCV/E2 glycoprotein may interfere with the neutralizing Abs directed against the 412-423 region (epitope I) involved in the binding to CD81. In this paper, we investigate on the molecular features of this phenomenon describing an anti-HCV/E2 monoclonal Ab (mAb) (e509) endowed with a weak neutralizing activity, and whose epitope is centered on epitope II. Interestingly, e509 influenced the potent neutralizing activity of AP33, one of the best characterized anti-HCV/E2 mAb, whereas it did not show any interfering activity against two other broadly neutralizing mAbs (e20 and e137), whose epitopes partially overlap with that of e509 and which possibly displace it from the antigen. These data may give a possible clue to interpret the conflicting studies published to date on the mechanism of interference, suggesting the existence of at least two groups of broadly neutralizing anti-HCV/E2 Abs: (i) those whose epitope is focused on the 412-423 CD81-binding region and whose activity may be hampered by other Abs directed against the 436-447 region, and (ii) those directed against CD81-binding regions but whose epitope contains also residues within the 436-447 region recognized by interfering mAbs, thus competing with them for binding. The conflicting results of previous studies may therefore depend on the relative amount of each of these two populations in the polyclonal preparations used. Overall, a better comprehension of this phenomenon may be of importance in the set up of novel mAb-based anti-HCV therapeutic strategies.


Viruses | 2012

Neutralization interfering antibodies: A"novel" example of humoral immune dysfunction facilitating viral escape?

Mancini Nicasio; Giuseppe Sautto; Nicola Clementi; Roberta Antonia Diotti; Elena Criscuolo; Matteo Castelli; Laura Solforosi; Massimo Clementi; Roberto Burioni

The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs) have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this “novel” evasion strategy.


Gut | 2016

Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein

Giuseppe Sautto; Karin Wisskirchen; Nicola Clementi; Matteo Castelli; Roberta Antonia Diotti; Julia Graf; Massimo Clementi; Roberto Burioni; Ulrike Protzer; Nicasio Mancini

Objective The recent availability of novel antiviral drugs has raised new hope for a more effective treatment of hepatitis C virus (HCV) infection and its severe sequelae. However, in the case of non-responding or relapsing patients, alternative strategies are needed. To this end we have used chimeric antigen receptors (CARs), a very promising approach recently used in several clinical trials to redirect primary human T cells against different tumours. In particular, we designed the first CARs against HCV targeting the HCV/E2 glycoprotein (HCV/E2). Design Anti-HCV/E2 CARs were composed of single-chain variable fragments (scFvs) obtained from a broadly cross-reactive and cross-neutralising human monoclonal antibody (mAb), e137, fused to the intracellular signalling motif of the costimulatory CD28 molecule and the CD3ζ domain. Activity of CAR-grafted T cells was evaluated in vitro against HCV/E2-transfected cells as well as hepatocytes infected with cell culture-derived HCV (HCVcc). Results In this proof-of-concept study, retrovirus-transduced human T cells expressing anti-HCV/E2 CARs were endowed with specific antigen recognition accompanied by degranulation and secretion of proinflammatory and antiviral cytokines, such as interferon γ, interleukin 2 and tumour necrosis factor α. Moreover, CAR-grafted T cells were capable of lysing target cells of both hepatic and non-hepatic origin expressing on their surface the HCV/E2 glycoproteins of the most clinically relevant genotypes, including 1a, 1b, 2a, 3a, 4 and 5. Finally, and more importantly, they were capable of lysing HCVcc-infected hepatocytes. Conclusions Clearance of HCV-infected cells is a major therapeutic goal in chronic HCV infection, and adoptive transfer of anti-HCV/E2 CARs-grafted T cells represents a promising new therapeutic tool.


Clinical & Developmental Immunology | 2013

Peptide-Based Vaccinology: Experimental and Computational Approaches to Target Hypervariable Viruses through the Fine Characterization of Protective Epitopes Recognized by Monoclonal Antibodies and the Identification of T-Cell-Activating Peptides

Matteo Castelli; Francesca Cappelletti; Roberta Antonia Diotti; Giuseppe Sautto; Elena Criscuolo; Matteo Dal Peraro; Nicola Clementi

Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization of monoclonal antibodies (mAbs), still represents the best approach to identify protective epitopes. In particular, a protective mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing. Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.


Clinical & Developmental Immunology | 2012

HCV Proteins and Immunoglobulin Variable Gene (IgV) Subfamilies in HCV-Induced Type II Mixed Cryoglobulinemia: A Concurrent Pathogenetic Role

Giuseppe Sautto; Nicasio Mancini; Laura Solforosi; Roberta Antonia Diotti; Massimo Clementi; Roberto Burioni

The association between hepatitis C virus (HCV) infection and type II mixed cryoglobulinemia (MCII) is well established, but the role played by distinct HCV proteins and by specific components of the anti-HCV humoral immune response remains to be clearly defined. It is widely accepted that HCV drives the expansion of few B-cell clones expressing a restricted pool of selected immunoglobulin variable (IgV) gene subfamilies frequently endowed with rheumatoid factor (RF) activity. Moreover, the same IgV subfamilies are frequently observed in HCV-transformed malignant B-cell clones occasionally complicating MCII. In this paper, we analyze both the humoral and viral counterparts at the basis of cryoglobulins production in HCV-induced MCII, with particular attention reserved to the single IgV subfamilies most frequently involved.

Collaboration


Dive into the Roberta Antonia Diotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicasio Mancini

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Roberto Burioni

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Sautto

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Nicola Clementi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Laura Solforosi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Elena Criscuolo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Donata De Marco

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Mario Perotti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Matteo Castelli

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge