Roberta Bottega
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberta Bottega.
Haematologica | 2011
Anna Savoia; Annalisa Pastore; Daniela De Rocco; Elisa Civaschi; Mariateresa Di Stazio; Roberta Bottega; Federica Melazzini; Valeria Bozzi; Alessandro Pecci; Silvana Magrin; Carlo L. Balduini; Patrizia Noris
Background Bernard-Soulier syndrome is a severe bleeding disease due to a defect of GPIb/IX/V, a platelet complex that binds the von Willebrand factor. Due to the rarity of the disease, there are reports only on a few cases compromising any attempt to establish correlations between genotype and phenotype. In order to identify any associations, we describe the largest case series ever reported, which was evaluated systematically at the same center. Design and Methods Thirteen patients with the disease and seven obligate carriers were enrolled. We collected clinical aspects and determined platelet features, including number and size, expression of membrane glycoproteins, and ristocetin induced platelet aggregation. Mutations were identified by direct sequencing of the GP1BA, GP1BB, and GP9 genes and their effect was shown by molecular modeling analyses. Results Patients all had a moderate thrombocytopenia with giant platelets and a bleeding tendency whose severity varied among individuals. Consistent with expression levels of GPIbα always lower than 10% of control values, platelet aggregation was absent or severely reduced. Homozygous mutations were identified in the GP1BA, GP1BB and GP9 genes; six were novel alterations expected to destabilize the conformation of the respective protein. Except for obligate carriers of a GP9 mutation with a reduced GPIb/IX/V expression and defective aggregation, all the other carriers had no obvious anomalies. Conclusions Regardless of mutations identified, the patients’ bleeding diathesis did not correlate with thrombocytopenia, which was always moderate, and platelet GPIbα expression, which was always severely impaired. Obligate carriers had features similar to controls though their GPIb/IX/V expression showed discrepancies. Aware of the limitations of our cohort, we cannot define any correlations. However, further investigations should be encouraged to better understand the causes of this rare and underestimated disease.
Haematologica | 2012
Patrizia Noris; Silverio Perrotta; Roberta Bottega; Alessandro Pecci; Federica Melazzini; Elisa Civaschi; Sabina Russo; Silvana Magrin; Giuseppe Loffredo; Veronica Di Salvo; Giovanna Russo; Maddalena Casale; Daniela De Rocco; Claudio Grignani; Marco Cattaneo; Carlo Baronci; Alfredo Dragani; V. Albano; Momcilo Jankovic; Saverio Scianguetta; Anna Savoia; Carlo L. Balduini
Background Bernard-Soulier syndrome is a very rare form of inherited thrombocytopenia that derives from mutations in GPIbα, GPIbβ, or GPIX and is typically inherited as a recessive disease. However, some years ago it was shown that the monoallelic c.515C>T transition in the GPIBA gene (Bolzano mutation) was responsible for macrothrombocytopenia in a few Italian patients. Design and Methods Over the past 10 years, we have searched for the Bolzano mutation in all subjects referred to our institutions because of an autosomal, dominant form of thrombocytopenia of unknown origin. Results We identified 42 new Italian families (103 cases) with a thrombocytopenia induced by monoallelic Bolzano mutation. Analyses of the geographic origin of affected pedigrees and haplotypes indicated that this mutation originated in southern Italy. Although the clinical expression was variable, patients with this mutation typically had a mild form of Bernard-Soulier syndrome with mild thrombocytopenia and bleeding tendency. The most indicative laboratory findings were enlarged platelets and reduced GPIb/IX/V platelet expression; in vitro platelet aggregation was normal in nearly all of the cases. Conclusions Our study indicates that monoallelic Bolzano mutation is the most frequent cause of inherited thrombocytopenia in Italy, affecting 20% of patients recruited at our institutions during the last 10 years. Because many people from southern Italy have emigrated during the last century, this mutation may have spread to other countries.
Blood | 2015
Roberta Bottega; Caterina Marconi; Michela Faleschini; Gabriele Baj; Claudia Cagioni; Alessandro Pecci; Tommaso Pippucci; Ugo Ramenghi; Simonetta Pardini; Loretta Ngu; Carlo Baronci; Shinji Kunishima; Carlo L. Balduini; Marco Seri; Anna Savoia; Patrizia Noris
Inherited thrombocytopenias (ITs) are a heterogeneous group of syndromic and nonsyndromic diseases caused by mutations affecting different genes. Alterations of ACTN1, the gene encoding for α-actinin 1, have recently been identified in a few families as being responsible for a mild form of IT (ACTN1-related thrombocytopenia; ACTN1-RT). To better characterize this disease, we screened ACTN1 in 128 probands and found 10 (8 novel) missense heterozygous variants in 11 families. Combining bioinformatics, segregation, and functional studies, we demonstrated that all but 1 amino acid substitution had deleterious effects. The clinical and laboratory findings of 31 affected individuals confirmed that ACTN1-RT is a mild macrothrombocytopenia with low risk for bleeding. Low reticulated platelet counts and only slightly increased serum thrombopoietin levels indicated that the latest phases of megakaryopoiesis were affected. Given its relatively high frequency in our cohort (4.2%), ACTN1-RT has to be taken into consideration in the differential diagnosis of ITs.
Haematologica | 2013
Roberta Bottega; Alessandro Pecci; Erica De Candia; Nuria Pujol-Moix; Paula G. Heller; Patrizia Noris; Daniela De Rocco; Gian Marco Podda; Ana C. Glembotsky; Marco Cattaneo; Carlo L. Balduini; Anna Savoia
The gray platelet syndrome is a rare inherited bleeding disorder characterized by macrothrombocytopenia and deficiency of alpha (α)-granules in platelets. The genetic defect responsible for gray platelet syndrome was recently identified in biallelic mutations in the NBEAL2 gene. We studied 11 consecutive families with inherited macrothrombocytopenia of unknown origin and α-granule deficiency. All of them underwent NBEAL2 DNA sequencing and evaluation of the platelet phenotype, including a systematic assessment of the α-granule content by immunofluorescence analysis for α-granule secretory proteins. We identified 9 novel mutations hitting the two alleles of NBEAL2 in 4 probands. They included missense, nonsense and frameshift mutations, as well as nucleotide substitutions that altered the splicing mechanisms as determined at the RNA level. All the individuals with NBEAL2 biallelic mutations showed almost complete absence of platelet α-granules. Interestingly, the 13 individuals assumed to be asymptomatic because carriers of a mutated allele had platelet macrocytosis and significant reduction of the α-granule content. However, they were not thrombocytopenic. In the remaining 7 probands, we did not identify any NBEAL2 alterations, suggesting that other genetic defect(s) are responsible for their platelet phenotype. Of note, these patients were characterized by a lower severity of the α-granule deficiency than individuals with two NBEAL2 mutated alleles. Our data extend the spectrum of mutations responsible for gray platelet syndrome and demonstrate that macrothrombocytopenia with α-granule deficiency is a genetic heterogeneous trait. In terms of practical applications, the screening of NBEAL2 is worthwhile only in patients with macrothrombocytopenia and severe reduction of the α-granules. Finally, individuals carrying one NBEAL2 mutated allele have mild laboratory abnormalities, suggesting that even haploinsufficiency has an effect on platelet phenotype.
Haematologica | 2014
Patrizia Noris; Nicole Schlegel; Catherine Klersy; Paula G. Heller; Elisa Civaschi; Nuria Pujol-Moix; Fabrizio Fabris; Rémi Favier; Paolo Gresele; Véronique Latger-Cannard; Adam Cuker; Paquita Nurden; Andreas Greinacher; Marco Cattaneo; Erica De Candia; Alessandro Pecci; Marie-Françoise Hurtaud-Roux; Ana C. Glembotsky; Eduardo Muñiz-Diaz; Maria Luigia Randi; Nathalie Trillot; Loredana Bury; Thomas Lecompte; Caterina Marconi; Anna Savoia; Carlo L. Balduini; Sophie Bayart; Anne Bauters; Schéhérazade Benabdallah-Guedira; Françoise Boehlen
Pregnancy in women with inherited thrombocytopenias is a major matter of concern as both the mothers and the newborns are potentially at risk of bleeding. However, medical management of this condition cannot be based on evidence because of the lack of consistent information in the literature. To advance knowledge on this matter, we performed a multicentric, retrospective study evaluating 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Neither the degree of thrombocytopenia nor the severity of bleeding tendency worsened during pregnancy and the course of pregnancy did not differ from that of healthy subjects in terms of miscarriages, fetal bleeding and pre-term births. The degree of thrombocytopenia in the babies was similar to that in the mother. Only 7 of 156 affected newborns had delivery-related bleeding, but 2 of them died of cerebral hemorrhage. The frequency of delivery-related maternal bleeding ranged from 6.8% to 14.2% depending on the definition of abnormal blood loss, suggesting that the risk of abnormal blood loss was increased with respect to the general population. However, no mother died or had to undergo hysterectomy to arrest bleeding. The search for parameters predicting delivery-related bleeding in the mother suggested that hemorrhages requiring blood transfusion were more frequent in women with history of severe bleedings before pregnancy and with platelet count at delivery below 50 × 109/L.
European Journal of Medical Genetics | 2013
Daniela De Rocco; Barbara Zieger; Helen Platokouki; Paula G. Heller; Annalisa Pastore; Roberta Bottega; Patrizia Noris; Serena Barozzi; Ana C. Glembotsky; Helen Pergantou; Carlo L. Balduini; Anna Savoia; Alessandro Pecci
MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, each with a novel MYH9 mutation. Two mutations, p.Val34Gly and p.Arg702Ser, affect the motor domain of myosin-9, whereas the other three, p.Met847_Glu853dup, p.Lys1048_Glu1054del, and p.Asp1447Tyr, hit the coiled-coil tail domain of the protein. The motor domain mutations were associated with more severe clinical phenotypes than those in the tail domain.
Scientific Reports | 2016
Silvia Ravera; Carlo Dufour; Simone Cesaro; Roberta Bottega; Michela Faleschini; Paola Cuccarolo; Fabio Corsolini; Cesare Usai; Marta Columbaro; Marco Cipolli; Anna Savoia; Paolo Degan; Enrico Cappelli
Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials.
Biochimica et Biophysica Acta | 2017
Enrico Cappelli; Paola Cuccarolo; Giorgia Stroppiana; Maurizio Miano; Roberta Bottega; Vanessa Cossu; Paolo Degan; Silvia Ravera
Energetic metabolism plays an essential role in the differentiation of haematopoietic stem cells (HSC). In Fanconi Anaemia (FA), DNA damage is accumulated during HSC differentiation, an event that is likely associated with bone marrow failure (BMF). One of the sources of the DNA damage is altered mitochondrial metabolism and an associated increment of oxidative stress. Recently, altered mitochondrial morphology and a deficit in the energetic activity in FA cells have been reported. Considering that mitochondria are the principal site of aerobic ATP production, we investigated FA metabolism in order to understand what pathways are able to compensate for this energy deficiency. In this work, we report that the impairment in mitochondrial oxidative phosphorylation (OXPHOS) in FA cells is countered by an increase in glycolytic flux. By contrast, glutaminolysis appears lower with respect to controls. Therefore, it is possible to conclude that in FA cells glycolysis represents the main pathway for producing energy, balancing the NADH/NAD+ ratio by the conversion of pyruvate to lactate. Finally, we show that a forced switch from glycolytic to OXPHOS metabolism increases FA cell oxidative stress. This could be the cause of the impoverishment in bone marrow HSC during exit from the homeostatic quiescent state. This is the first work that systematically explores FA energy metabolism, highlighting its flaws, and discusses the possible relationships between these defects and BMF.
Journal of Cellular Physiology | 2015
Silvia Ravera; Cristina Capanni; Danika Tognotti; Roberta Bottega; Marta Columbaro; Carlo Dufour; Enrico Cappelli; Paolo Degan
Bone marrow (BM) failure, increased risk of myelodysplastic syndrome, acute leukaemia and solid tumors, endocrinopathies and congenital abnormalities are the major clinical problems in Fanconi anemia patients (FA). Chromosome instability and DNA repair defects are the cellular characteristics used for the clinical diagnosis. However, these biological defects are not sufficient to explain all the clinical phenotype of FA patients. The known defects are structural alteration in cell cytoskeleton, altered structural organization for intermediate filaments, nuclear lamina, and mitochondria. These are associated with different expression and/or maturation of the structural proteins vimentin, mitofilin, and lamin A/C suggesting the involvement of metalloproteinases (MPs). Matrix metalloproteinases (MMP) are involved in normal physiological processes such as human skeletal tissue development, maturation, and hematopoietic reconstitution after bone marrow suppression. Current observations upon the eventual role of MPs in FA cells are largely inconclusive. We evaluated the overall MPs activity in FA complementation group A (FANCA) cells by exposing them to the antioxidants N‐acetyl cysteine (NAC) and resveratrol (RV). This work supports the hypothesis that treatment of Fanconi patients with antioxidants may be important in FA therapy. J. Cell. Physiol. 230: 603–609, 2015.
PLOS ONE | 2013
Manola Comar; Daniela De Rocco; Enrico Cappelli; Nunzia Zanotta; Roberta Bottega; Johanna Svahn; Piero Farruggia; Aldo Misuraca; Fabio Corsolini; Carlo Dufour; Anna Savoia
Fanconi anemia (FA) is a recessive DNA repair disease characterized by a high predisposition to developing neoplasms. DNA tumor polyomavirus simian virus 40 (SV40) transforms FA fibroblasts at high efficiency suggesting that FA patients could be highly susceptible to SV40 infection. To test this hypothesis, the large tumor (LT) antigen of SV40, BKV, JCV and Merkel Cell (MC) polyomaviruses were tested in blood samples from 89 FA patients and from 82 of their parents. Two control groups consisting of 47 no-FA patients affected by other genetic bone marrow failure diseases and 91 healthy subjects were also evaluated. Although JCV, BKV and MC were not found in any of the FA samples, the prevalence and viral load of SV40 were higher in FA patients (25%; mean viral load: 1.1×102 copies/105cells) as compared with healthy individuals (4.3%; mean viral load: 0.8×101 copies/105cells) and genetic controls (0%) (p<0.005). A marked age-dependent frequency of SV40 was found in FA with respect to healthy subjects suggesting that, although acquired early in life, the virus can widespread more easily in specific groups of population. From the analysis of family pedigrees, 60% of the parents of SV40-positive probands were positive for the virus compared to 2% of the parents of the SV40-negative probands (p<0.005). It is worthy of note that the relative frequency of SV40-positive relatives detected in this study was the highest ever reported, showing that asymptomatic FA carriers are also more susceptible to SV40. In conclusion, we favor the hypothesis that SV40 spread could be facilitated by individuals who are genetically more susceptible to infection, such as FA patients. The increased susceptibility to SV40 infection seems to be associated with a specific defect of the immune system which supports a potential interplay of SV40 with an underlying genetic alteration that increases the risk of malignancies.