Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Censi is active.

Publication


Featured researches published by Roberta Censi.


Journal of Controlled Release | 2012

Hydrogels for protein delivery in tissue engineering.

Roberta Censi; Piera Di Martino; Tina Vermonden; Wim E. Hennink

Tissue defects caused by diseases or trauma present enormous challenges in regenerative medicine. Recently, a better understanding of the biological processes underlying tissue repair led to the establishment of new approaches in tissue engineering which comprise the combination of biodegradable scaffolds and appropriate cells together with specific environmental cues, such as growth or adhesive factors. These factors (in fact proteins) have to be loaded and sustainably released from the scaffolds in time. This review provides an overview of the various hydrogel technologies that have been proposed to control the release of bioactive molecules of interest for tissue engineering applications. In particular, after a brief introduction on bioactive protein drugs that have remarkable relevance for tissue engineering, this review will discuss their release mechanisms from hydrogels, their encapsulation and immobilization methods and will overview the main classes of hydrogel forming biomaterials used in vitro and in vivo to release them. Finally, an outlook on future directions and a glimpse into the current clinical developments are provided.


Journal of Controlled Release | 2009

Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery

Roberta Censi; Tina Vermonden; M.J. van Steenbergen; Hendrik Deschout; Kevin Braeckmans; S.C. De Smedt; C.F. van Nostrum; P. Di Martino; Wim E. Hennink

In this paper the possibility to tailor degradation and protein release behavior of photopolymerized thermosensitive hydrogels is studied. The hydrogels consist of ABA triblock copolymer, in which the thermosensitive A-blocks are methacrylated poly(N-(2-hydroxypropyl)methacrylamide lactate)s and the B-block is poly(ethylene glycol) with molecular weight of 10 kDa. These hydrogels are prepared by using a combination of physical and chemical cross-linking methods. When a solution of a thermosensitive methacrylated p(HPMAm-lac)-PEG-p(HPMAm-lac) is heated above its cloud point a viscoelastic material is obtained, which can be stabilized by introducing covalent cross-links by photopolymerization. By varying the polymer concentration, hydrogels with different mechanical properties are formed, of which the cross-linking density, mesh size, swelling and degradation behavior can be tuned. It was demonstrated that the release rate of three model proteins (lysozyme, BSA and IgG, with hydrodynamic diameters ranging from 4.1 to 10.7 nm) depended on the protein size and hydrogel molecular weight between cross-links and was governed by the Fickian diffusion. Importantly, the encapsulated proteins were quantitatively released and the secondary structure and the enzymatic activity of lysozyme were fully preserved demonstrating the protein friendly nature of the studied delivery system.


Acta Biomaterialia | 2011

In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications

Laura Pescosolido; Tina Vermonden; Jos Malda; Roberta Censi; Wouter J.A. Dhert; Franco Alhaique; Wim E. Hennink; Pietro Matricardi

In situ forming hydrogels, which allow for the modulation of physico-chemical properties, and in which cell response can be tailored, are providing new opportunities for biomedical applications. Here, we describe interpenetrating polymer networks (IPNs) based on a physical network of calcium alginate (Alg-Ca), interpenetrated with a chemical one based on hydroxyethyl-methacrylate-derivatized dextran (dex-HEMA). IPNs with different concentration and degree of substitution of dex-HEMA were characterized and evaluated for protein release as well as for the behavior of embedded cells. The results demonstrated that the properties of the semi-IPNs, which are obtained by dissolution of dex-HEMA chains into the Alg-Ca hydrogels, would allow for injection of these hydrogels. Degradation times of the IPNs after photocross-linking could be tailored from 15 to 180 days by the concentration and the degree of substitution of dex-HEMA. Further, after an initial burst release, bovine serum albumin was gradually released from the IPNs over approximately 15 days. Encapsulation of expanded chondrocytes in the IPNs revealed that cells remained viable and, depending on the composition, were able to redifferentiate, as was demonstrated by the deposition of collagen type II. These results demonstrate that these IPNs are attractive materials for pharmaceutical and biomedical applications due to their tailorable mechanical and degradation characteristics, their release kinetics and biocompatibility.


Biomacromolecules | 2010

Photopolymerized thermosensitive poly(HPMAlactate)-PEG-based hydrogels: effect of network design on mechanical properties, degradation, and release behavior.

Roberta Censi; Tina Vermonden; Hendrik Deschout; Kevin Braeckmans; Piera Di Martino; Stefaan C. De Smedt; Cornelus F. van Nostrum; Wim E. Hennink

Photopolymerized thermosensitive A-B-A triblock copolymer hydrogels composed of poly(N-(2-hydroxypropyl)methacrylamide lactate) A-blocks, partly derivatized with methacrylate groups to different extents (10, 20, and 30%) and hydrophilic poly(ethylene glycol) B-blocks of different molecular weights (4, 10, and 20 kDa) were synthesized. The aim of the present study was to correlate the polymer architecture with the hydrogel properties, particularly rheological, swelling, degradation properties and release behavior. It was found that an increasing methacrylation extent and a decreasing PEG molecular weight resulted in increasing gel strength and cross-link density, which tailored the degradation profiles from 25 to more than 300 days. Polymers having small PEG blocks showed a remarkable phase separation into polymer- and water-rich domains, as demonstrated by confocal microscopy. Depending on the hydrophobic domain density, the loaded protein resides in the hydrophilic pores or is partitioned into hydrophilic and hydrophobic domains, and its release from these compartments is tailored by the extent of methacrylation and by PEG length, respectively. As the mechanical properties, degradation, and release profiles can be fully controlled by polymer design and concentration, these hydrogels are suitable for controlled protein release.


Molecules | 2015

Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs

Roberta Censi; Piera Di Martino

Drugs with low water solubility are predisposed to poor and variable oral bioavailability and, therefore, to variability in clinical response, that might be overcome through an appropriate formulation of the drug. Polymorphs (anhydrous and solvate/hydrate forms) may resolve these bioavailability problems, but they can be a challenge to ensure physicochemical stability for the entire shelf life of the drug product. Since clinical failures of polymorph drugs have not been uncommon, and some of them have been entirely unexpected, the Food and Drug Administration (FDA) and the International Conference on Harmonization (ICH) has required preliminary and exhaustive screening studies to identify and characterize all the polymorph crystal forms for each drug. In the past, the polymorphism of many drugs was detected fortuitously or through manual time consuming methods; today, drug crystal engineering, in particular, combinatorial chemistry and high-throughput screening, makes it possible to easily and exhaustively identify stable polymorphic and/or hydrate/dehydrate forms of poorly soluble drugs, in order to overcome bioavailability related problems or clinical failures. This review describes the concepts involved, provides examples of drugs characterized by poor solubility for which polymorphism has proven important, outlines the state-of-the-art technologies and discusses the pertinent regulations.


Journal of Pharmaceutical Sciences | 2008

Physico‐Chemical and Technological Properties of Sodium Naproxen Granules Prepared in a High‐Shear Mixer‐Granulator

Piera Di Martino; L. Malaj; Roberta Censi; Sante Martelli

In the present work, authors produced tablets of anhydrous sodium naproxen by wet granulation using a high-shear mixer-granulator. Drug hydrated to the tetrahydrated form, as observed by X-ray powder diffractometry. After wet granulation, authors then performed two different drying procedures, obtaining granules of different water content and crystallographic characteristics. The first procedure dried granules in the high-shear mixer-granulator by applying vacuum at room temperature (batch A), while the second employed the same apparatus and time, under vacuum at 40 degrees C (batch B). X-ray powder diffractometry revealed that the sodium naproxen (SN) contained in batch A granules was a mixture of dihydrated and tetrahydrated forms (as demonstrated by the coexistence of peaks typical of both hydrated forms), while that of batch B granules was a mixture of monohydrated and tetrahydrated forms. This means that differences in drying procedures could lead to products of different crystallographic properties. The behavior under compression was evaluated, revealing that batch A offered the best tabletability and compressibility. These results make it possible to conclude that differences in the crystallographic properties and water content of SN are such that different hydration/drying processes can alter the drug crystal form and thus the tabletability of the resulting granules.


International Journal of Pharmaceutics | 2010

Compression behaviour of anhydrous and hydrate forms of sodium naproxen.

Ledjan Malaj; Roberta Censi; Zehadin Gashi; Piera Di Martino

The aim of the present work was to investigate the technological properties and the compression behaviour of the anhydrous and hydrate solid forms of sodium naproxen. Among the hydrates, the following forms were studied: the monohydrate (MSN), obtained by dehydrating a dihydrated form (DSN) in each turn obtained by exposing the anhydrous form at 55% RH; a dihydrated form (CSN) obtained by crystallizing sodium naproxen from water, the tetrahydrated form (TSN) obtained by exposing the anhydrous form at 75% RH. The physico-chemical (crystalline form and water content), the micromeritic (crystal morphology and particle size) and the mechanical properties (Carrs index, apparent particle density, compression behaviour, elastic recovery and strength of compact) were evaluated. We made every effort to reduce differences in crystal habit, particle size and distribution, and amount of absorbed water among the samples, so that the only factors affecting their technological behaviour would be the degree of hydration and the crystalline structure. This study demonstrates a correlation between the compression behaviour and the water molecules present in the crystalline structures. The sites where water molecules are accommodated in the crystalline structure behave like weak points where the crystalline lattice yields under compression. The crystal deformability is proportional to the number of water molecules in these sites; the higher the water content, the higher the deformability, because the densification behaviour changes from a predominantly elastic deformation to a plastic behaviour. The deformability is responsible for a higher densification tendency that favours larger interparticle bonding areas that may explain the better tabletability of TSN and CSN.


Journal of Pharmaceutical Sciences | 2009

Differences in the interaction between aryl propionic acid derivatives and poly(vinylpyrrolidone) K30: A multi-methodological approach

Zehadin Gashi; Roberta Censi; Ledjan Malaj; Roberto Gobetto; Matteo Mozzicafreddo; Mauro Angeletti; Admir Masic; Piera Di Martino

The present work aims at the application of several methods to explain differences in the physical interaction of some aryl propionic acid derivatives (ibuprofen [IBP], ketoprofen [KET], flurbiprofen [FLU], naproxen [NAP], fenbufen [FEN]) with poly(vinylpyrrolidone) (PVP) K30, stored together at 298 +/- 0.5 K and 22% RH. X-ray powder diffractometry and (13)C-solid state NMR demonstrated that IBP was able to strongly interact with the polymer, while weak interaction was observed for KET, FLU, NAP, and the least for FEN. The interaction of comelted drug and PVP was studied by differential scanning calorimetry by applying the Gordon-Taylor equation, which revealed that small molar drug volumes may favour the drug diffusion through the PVP amorphous chains increasing the polymer free volume and decreasing the mixture T(g). The molecular docking study revealed that intermolecular energy is mainly due to the contribution of van der Waals energy component, causing the differences among the drugs, and is related to the drug-PVP surface contact area in the complex formed. Solid-state kinetic study demonstrated that IBP molecules are involved in a three-dimensional diffusion mechanism within the polymer favoured by its low molar volume that reduces molecular hindrance, and by the weakness of its crystal lattice, which facilitates crystallinity loss and stabilisation of the amorphous phase.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

Influence of crystal hydration on the mechanical properties of sodium naproxen.

Etienne Joiris; Piera Di Martino; L. Malaj; Roberta Censi; Christine Barthélémy; Pascal Odou

The aim of this work is to establish a correlation between water uptake by anhydrous sodium naproxen (ASN) at two different relative humidities and modifications in tableting and densification behaviour under hydration. Water uptake was evaluated at different relative humidities. Models for the hydration kinetics of ASN at 55% and 86%, corresponding to the formation of the dihydrated and tetrahydrated forms, respectively, were evaluated assuming Eyrings dependence on temperature. Tabletability, compressibility, compactibility, and densification behaviour were determined using an instrumented single punch tablet machine. Kinetic data are consistent with a model where water molecules enter the crystal preferentially along hydrophilic tunnels existing in the crystal structure and corresponding to the propionate side chain. Water inclusion perturbs the crystallographic structure, causing slight structural changes according to the amount and associated to an increase in entropy. The interposition of water molecules between sodium naproxen molecules weakens intermolecular bonds, and these sites can behave like sliding planes under compression. Such structural changes may explain the improved compression behaviour and modified densification propensity mechanism. Kinetic data describing the water hydration mechanism of ASN explain in an original way the improved tableting and densification properties under hydration.


Journal of Biomedical Materials Research Part A | 2011

The tissue response to photopolymerized PEG-p(HPMAm-lactate)-based hydrogels

Roberta Censi; Sander M. van Putten; Tina Vermonden; Piera Di Martino; Cornelus F. van Nostrum; Martin C. Harmsen; Ruud A. Bank; Wim E. Hennink

Hydrogels are three-dimensional networks of crosslinked hydrophilic polymers widely used for protein delivery and tissue engineering. To be eligible for in vivo applications, the hydrogels should not evoke an adverse tissue response. In this study the angiogenic and inflammatory responses in vivo after implantation of photopolymerized thermosensitive poly(hydroxypropyl methacrylamide lactate)-poly(ethyl copolymer hydrogels are investigated. Hydrogels consisting of polymers with different crosslink densities were subcutaneously implanted in Balb/c mice and histological evaluation of the tissue response was performed. The implants showed an acute and localized inflammatory reaction upon implantation, mainly characterized by a strong infiltration of granulocytes. The acute inflammatory reaction was followed by a milder chronic inflammation which was characterized by infiltration of macrophages and persistent but decreasing levels of granulocytes. The number of macrophages and blood vessels was associated with the biodegradation and resorption of the biomaterial and increased in time as the degradation of the materials progressed. The observed degradation rates in vivo correlated well with previously observed in vitro degradation rates, which suggests that hydrolysis is the main mechanism governing the degradation.

Collaboration


Dive into the Roberta Censi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ela Hoti

University of Tirana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge