Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Croce is active.

Publication


Featured researches published by Roberta Croce.


The EMBO Journal | 2009

Functional architecture of higher plant photosystem II supercomplexes

Stefano Caffarri; Roman Kouřil; Sami Kereiche; Egbert J. Boekema; Roberta Croce

Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C2S2M2 supercomplex were isolated. Characterization by biochemical methods and single particle electron microscopy allowed to relate for the first time the supramolecular organization to the protein content. A projection map of C2S2M2 at 12 Å resolution was obtained, which allowed determining the location and the orientation of the antenna proteins. Comparison of the supercomplexes obtained from WT and Lhcb‐deficient plants reveals the importance of the individual subunits for the supramolecular organization. The functional implications of these findings are discussed and allow redefining previous suggestions on PSII energy transfer, assembly, photoinhibition, state transition and non‐photochemical quenching.


Journal of Biological Chemistry | 1999

Carotenoid-binding Sites of the Major Light-harvesting Complex II of Higher Plants

Roberta Croce; Saskia Weiss; Roberto Bassi

Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained byin vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron crystallography in the helix A/helix B cross, have the highest affinity for lutein, but also bind violaxanthin and zeaxanthin with lower affinity. The latter xanthophyll causes disruption of excitation energy transfer. The occupancy of at least one of these sites, probably L1, is essential for protein folding. Neoxanthin is bound to a distinct site (N1) that is highly selective for this species and whose occupancy is not essential for protein folding. Whereas xanthophylls in the L1 and L2 sites interact mainly with chlorophyll a, neoxanthin shows strong interaction with chlorophyll b, inducing the hyperchromic effect of the 652 nm absorption band. This observation explains the recent results of energy transfer from carotenoids to chlorophyllb obtained by femtosecond absorption spectroscopy. Whereas xanthophylls in the L1 and L2 sites are active in photoprotection through chlorophyll-triplet quenching, neoxanthin seems to act mainly in 1O2 *scavenging.


FEBS Letters | 2008

Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching

Yuliya Miloslavina; Antje Wehner; Petar H. Lambrev; Emilie Wientjes; Michael Reus; Győző Garab; Roberta Croce; Alfred R. Holzwarth

Time‐resolved fluorescence on oligomers of the main light‐harvesting complex from higher plants indicate that in vitro oligomerization leads to the formation of a weakly coupled inter‐trimer chlorophyll–chlorophyll (Chl) exciton state which converts in tens of ps into a state which is spectrally broad and has a strongly far‐red enhanced fluorescence spectrum. Both its lifetime and spectrum show striking similarity with a 400 ps fluorescence component appearing in intact leaves of Arabidopsis when non‐photochemical quenching (NPQ) is induced. The fluorescence components with high far‐red/red ratio are thus a characteristic marker for NPQ conditions in vivo. The far‐red emitting state is shown to be an emissive Chl–Chl charge transfer state which plays a crucial part in the quenching.


Journal of Biological Chemistry | 1999

CHLOROPHYLL BINDING TO MONOMERIC LIGHT-HARVESTING COMPLEX : A MUTATION ANALYSIS OF CHROMOPHORE-BINDING RESIDUES

Rosaria Remelli; Claudio Varotto; Dorianna Sandonà; Roberta Croce; Roberto Bassi

The chromophore binding properties of the higher plant light-harvesting complex II have been studied by site-directed mutagenesis of pigment-binding residues. Mutant apoproteins were overexpressed in Escherichia coli and then refoldedin vitro with purified chromophores to yield holoproteins selectively affected in chlorophyll-binding sites. Biochemical and spectroscopic characterization showed a specific loss of pigments and absorption spectral forms for each mutant, thus allowing identification of the chromophores bound to most of the binding sites. On these bases a map for the occupancy of individual sites by chlorophyll a and chlorophyll b is proposed. In some cases a single mutation led to the loss of more than one chromophore indicating that four chlorophylls and one xanthophyll could be bound by pigment-pigment interactions. Differential absorption spectroscopy allowed identification of the Qy transition energy level for each chlorophyll within the complex. It is shown that not only site selectivity is largely conserved between light-harvesting complex II and CP29 but also the distribution of absorption forms among different protein domains, suggesting conservation of energy transfer pathways within the protein and outward to neighbor subunits of the photosystem.


Biochimica et Biophysica Acta | 2002

The Lhca antenna complexes of higher plants photosystem I.

Roberta Croce; Tomas Morosinotto; Simona Castelletti; Jacques Breton; Roberto Bassi

The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while beta-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.


Biophysical Journal | 2001

Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements.

Roberta Croce; Marc Muller; Roberto Bassi; Alfred R. Holzwarth

The energy transfer kinetics from carotenoids to chlorophylls and among chlorophylls has been measured by femtosecond transient absorption kinetics in a monomeric unit of the major light-harvesting complex (LHCII) from higher plants. The samples were reconstituted complexes with different carotenoid contents. The kinetics was measured both in the carotenoid absorption region and in the chlorophyll Q(y) region using two different excitation wavelengths suitable for selective excitation of the carotenoids. Analysis of the data shows that the overwhelming part of the energy transfer from the carotenoids occurs directly from the initially excited S(2) state of the carotenoids. Only a small part (<20%) may possibly take an S(1) pathway. All the S(2) energy transfer from carotenoids to chlorophylls occurs with time constants <100 fs. We have been able to differentiate among the three carotenoids, two luteins and neoxanthin, which have transfer times of approximately 50 and 75 fs for the two luteins, and approximately 90 fs for neoxanthin. About 50% of the energy absorbed by carotenoids is initially transferred directly to chlorophyll b (Chl b), while the rest is transferred to Chl a. Neoxanthin almost exclusively transfers to Chl b. Due to various complex effects discussed in the paper, such as a specific coupling of Chl b and Chl a excited states, the percentage of direct Chl b transfer thus is somewhat lower than estimated by us previously for LHCII from Arabidopsis thaliana. (Connelly, J. P., M. G. Müller, R. Bassi, R. Croce, and A. R. Holzwarth. 1997. Biochemistry. 36:281). We can distinguish three different Chls b receiving energy directly from carotenoids. We propose as a new mechanism that the carotenoid-to-Chl b transfer occurs to a large part via the B(x) state of Chl b and to the Q(x) state, while the transfer to Chl a occurs only via the Q(x) state. We find no compelling evidence in favor of a substantial S(1) transfer path of the carotenoids, although some transfer via the S(1) state of neoxanthin can not be entirely excluded. The S(1) lifetimes of the two luteins were determined to be 15 ps and 3.9 ps. A detailed quantitative analysis and kinetic model of the processes described here will be presented in a separate paper.


ChemPhysChem | 2010

Singlet Energy Dissipation in the Photosystem II Light‐Harvesting Complex Does Not Involve Energy Transfer to Carotenoids

Marc Muller; Petar H. Lambrev; Michael Reus; Emilie Wientjes; Roberta Croce; Alfred R. Holzwarth

The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of singlet-singlet annihilation are discussed. Under conditions where annihilation is absent, the two types of LHC II oligomers show distributive biexponential (bimodal) kinetics with lifetimes of approximately 5-20 ps and approximately 200-400 ps having transient spectra typical for chlorophyll excited states. The data can be described kinetically by a two-state compartment model involving only chlorophyll excited states. Evidence is provided that neither carotenoid excited nor carotenoid radical states are involved in the quenching mechanism at variance with earlier proposals. We propose instead that a chlorophyll-chlorophyll charge-transfer state is formed in LHC II oligomers which is an intermediate in the quenching process. The relevance to non-photochemical quenching in vivo is discussed.


Journal of Biological Chemistry | 2008

Photoprotection in the Antenna Complexes of Photosystem II ROLE OF INDIVIDUAL XANTHOPHYLLS IN CHLOROPHYLL TRIPLET QUENCHING

Milena Mozzo; Luca Dall'Osto; Rainer Hienerwadel; Roberto Bassi; Roberta Croce

In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O2 to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O2. As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.


FEBS Letters | 1999

The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants

Roberta Croce; Rosaria Remelli; Claudio Varotto; Jacques Breton; Roberto Bassi

The localisation of the xanthophyll neoxanthin within the structure of the major light harvesting complex (LHCII) of higher plants has been investigated by site‐directed mutagenesis and spectroscopic methods. Mutation analysis performed on pigment binding sites in different helix domains leads to selective loss of neoxanthin for mutations on helix C thus localising this pigment between the helix C and helix A/B domains. Recombinant proteins binding two lutein molecules per polypeptide but lacking neoxanthin have been used in order to determine the contribution of neoxanthin to the absorption and linear dichroism spectra. The data were used to derive the orientation of the neoxanthin transition moment, lying in the polyene chain, which was thus determined to form an angle of 57±1.5° with respect to the normal to the membrane plane where the protein is inserted. On the basis of these results we propose a model for the localisation of the carotenoid site in the LHCII structure which is still unresolved.


Biochimica et Biophysica Acta | 1998

Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties

Dorianna Sandonà; Roberta Croce; Aldo Pagano; Massimo Crimi; Roberto Bassi

Mutation analysis of higher plants light harvesting proteins has been prevented for a long time by the lack of a suitable expression system providing chromophores essential for the folding of these membrane-intrinsic pigment-protein complexes. Early work on in vitro reconstitution of the major light harvesting complex of photosystem II (LHCII) indicated an alternative way to mutation analysis of these proteins. A new procedure for in vitro refolding of the four light harvesting complexes of photosystem II, namely CP24, CP29, CP26 and LHCII yields recombinant pigment-proteins indistinguishable from the native proteins isolated from leaves. This method allows both the performing of single point mutations on protein sequence and the exchange of the chromophores bound to the protein scaffold. We review here recent results obtained by this method on the pigment-binding properties, on the chlorophyll-binding residues, on the identification of proton-binding sites and on the role of xanthophylls in the regulation of light harvesting function.

Collaboration


Dive into the Roberta Croce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert van Amerongen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Breton

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge