Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Faccio is active.

Publication


Featured researches published by Roberta Faccio.


Nature Medicine | 2005

Vav3 regulates osteoclast function and bone mass

Roberta Faccio; Steven L. Teitelbaum; Keiko Fujikawa; Jean Chappel; Alberta Zallone; Victor L. J. Tybulewicz; F. Patrick Ross; Wojciech Swat

Osteoporosis, a leading cause of morbidity in the elderly, is characterized by progressive loss of bone mass resulting from excess osteoclastic bone resorption relative to osteoblastic bone formation. Here we identify Vav3, a Rho family guanine nucleotide exchange factor, as essential for stimulated osteoclast activation and bone density in vivo. Vav3-deficient osteoclasts show defective actin cytoskeleton organization, polarization, spreading and resorptive activity resulting from impaired signaling downstream of the M-CSF receptor and αvβ3 integrin. Vav3-deficient mice have increased bone mass and are protected from bone loss induced by systemic bone resorption stimuli such as parathyroid hormone or RANKL. Moreover, we provide genetic and biochemical evidence for the role of Syk tyrosine kinase as a crucial upstream regulator of Vav3 in osteoclasts. Thus, Vav3 is a potential new target for antiosteoporosis therapy.


Journal of Experimental Medicine | 2003

Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells.

Keiko Fujikawa; Ana V. Miletic; Frederick W. Alt; Roberta Faccio; Tracie Brown; Jeremy Hoog; Jessica Fredericks; Shinzo Nishi; Shirly Mildiner; Sheri L. Moores; Joan S. Brugge; Fred S. Rosen; Wojciech Swat

The Vav family of Rho guanine nucleotide exchange factors is thought to orchestrate signaling events downstream of lymphocyte antigen receptors. Elucidation of Vav function has been obscured thus far by the expression of three highly related family members. We generated mice lacking all Vav family proteins and show that Vav-null mice produce no functional T or B cells and completely fail to mount both T-dependent and T-independent humoral responses. Whereas T cell development is blocked at an early stage in the thymus, immature B lineage cells accumulate in the periphery but arrest at a late “transitional” stage. Mechanistically, we show that the Vav family is crucial for both TCR and B cell receptor (BCR)–induced Ca2+ signaling and, surprisingly, is only required for mitogen-activated protein kinase (MAPK) activation in developing and mature T cells but not in B cells. Thus, the abundance of immature B cells generated in Vav-null mice may be due to intact Ras/MAPK signaling in this lineage. Although the expression of Vav1 alone is sufficient for normal lymphocyte development, our data also reveal lineage-specific roles for Vav2 and Vav3, with the first demonstration that Vav3 plays a critical compensatory function in T cells. Together, we define an essential role for the entire Vav protein family in lymphocyte development and activation and establish the limits of functional redundancy both within this family and between Vav and other Rho–guanine nucleotide exchange factors.


Journal of Clinical Investigation | 2006

PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2

Dailing Mao; Holly Epple; Brian Uthgenannt; Deborah V. Novack; Roberta Faccio

Excessive bone loss in arthritic diseases is mostly due to abnormal activation of the immune system leading to stimulation of osteoclasts. While phospholipase Cgamma (PLCgamma) isoforms are known modulators of T and B lymphocyte-mediated immune responses, we found that blockade of PLCgamma enzymatic activity also blocks early osteoclast development and function. Importantly, targeted deletion of Plcg2 in mice led to an osteopetrotic phenotype. PLCgamma2, independent of PLCgamma1, was required for receptor activator of NF-kappaB ligand-induced (RANKL-induced) osteoclastogenesis by differentially regulating nuclear factor of activated T cells c1 (NFATc1), activator protein-1 (AP1), and NF-kappaB. Specifically, we show that NFATc1 upregulation is dependent on RANKL-mediated phosphorylation of PLCgamma2 downstream of Dap12/Fc receptor gamma (Dap12/FcRgamma) receptors and is blocked by the PLCgamma inhibitor U73122. In contrast, activation of JNK and NF-kappaB was not affected by U73122 or Dap12/FcRgamma deletion. Interestingly, we found that in osteoclasts, PLCgamma2 formed a complex with the regulatory adapter molecule GAB2, was required for GAB2 phosphorylation, and modulated GAB2 recruitment to RANK. Thus, PLCgamma2 mediates RANKL-induced osteoclastogenesis and is a potential candidate for antiresorptive therapy.


Journal of Cell Biology | 2003

Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by β3 integrin

Roberta Faccio; Deborah V. Novack; Alberta Zallone; F. Patrick Ross; Steven L. Teitelbaum

The β3 integrin cytoplasmic domain, and specifically S752, is critical for integrin localization and osteoclast (OC) function. Because growth factors such as macrophage colony–stimulating factor and hepatocyte growth factor affect integrin activation and function via inside-out signaling, a process requiring the β integrin cytoplasmic tail, we examined the effect of these growth factors on OC precursors. To this end, we retrovirally expressed various β3 integrins with cytoplasmic tail mutations in β3-deficient OC precursors. We find that S752 in the β3 cytoplasmic tail is required for growth factor–induced integrin activation, cytoskeletal reorganization, and membrane protrusion, thereby affecting OC adhesion, migration, and bone resorption. The small GTPases Rho and Rac mediate cytoskeletal reorganization, and activation of each is defective in OC precursors lacking a functional β3 subunit. Activation of the upstream mediators c-Src and c-Cbl is also dependent on β3. Interestingly, although the FAK-related kinase Pyk2 interacts with c-Src and c-Cbl, its activation is not disrupted in the absence of functional β3. Instead, its activation is dependent upon intracellular calcium, and on the β2 integrin. Thus, the β3 cytoplasmic domain is responsible for activation of specific intracellular signals leading to cytoskeletal reorganization critical for OC function.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Oxytocin is an anabolic bone hormone

Roberto Tamma; Graziana Colaianni; Ling-Ling Zhu; Adriana DiBenedetto; Giovanni Greco; Gabriella Montemurro; Nicola Patano; Maurizio Strippoli; Rosaria Vergari; L. Mancini; Silvia Colucci; Maria Grano; Roberta Faccio; Xuan Liu; Jianhua Li; Sabah Usmani; Marilyn Bachar; Itai Bab; Katsuhiko Nishimori; Larry J. Young; Christoph Buettner; Jameel Iqbal; Li Sun; Mone Zaidi; Alberta Zallone

We report that oxytocin (OT), a primitive neurohypophyseal hormone, hitherto thought solely to modulate lactation and social bonding, is a direct regulator of bone mass. Deletion of OT or the OT receptor (Oxtr) in male or female mice causes osteoporosis resulting from reduced bone formation. Consistent with low bone formation, OT stimulates the differentiation of osteoblasts to a mineralizing phenotype by causing the up-regulation of BMP-2, which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expression. In contrast, OT has dual effects on the osteoclast. It stimulates osteoclast formation both directly, by activating NF-κB and MAP kinase signaling, and indirectly through the up-regulation of RANK-L. On the other hand, OT inhibits bone resorption by mature osteoclasts by triggering cytosolic Ca2+ release and NO synthesis. Together, the complementary genetic and pharmacologic approaches reveal OT as a novel anabolic regulator of bone mass, with potential implications for osteoporosis therapy.


Journal of Clinical Investigation | 2001

A Glanzmann’s mutation in β3 integrin specifically impairs osteoclast function

Xu Feng; Deborah V. Novack; Roberta Faccio; Daniel S. Ory; Kunihiko Aya; Martin I. Boyer; Kevin P. McHugh; F. Patrick Ross; Steven L. Teitelbaum

Osteoclastic bone resorption requires cell-matrix contact, an event mediated by the αvβ3 integrin. The structural components of the integrin that mediate osteoclast function are, however, not in hand. To address this issue, we generated mice lacking the β3 integrin gene, which have dysfunctional osteoclasts. Here, we show the full rescue of β3–/– osteoclast function following expression of a full-length β3 integrin. In contrast, truncated β3, lacking a cytoplasmic domain (hβ3Δc), is completely ineffective in restoring function to β3–/– osteoclasts. To identify the components of the β3 cytoplasmic domain regulating osteoclast function, we generated six point mutants known, in other circumstances, to mediate β integrin signaling. Of the six, only the S752P substitution, which also characterizes a form of the human bleeding disorder Glanzmann’s thrombasthenia, fails to rescue β3–/– osteoclasts or restore ligand-activated signaling in the form of c-src activation. Interestingly, the double mutation Y747F/Y759F, which disrupts platelet function, does not affect the osteoclast. Thus similarities and distinctions exist in the mechanisms by which the β3 integrin regulates platelets and osteoclasts.


Journal of Clinical Investigation | 2004

The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling

Michael W.-H. Wang; Shi Wei; Roberta Faccio; Sunao Takeshita; Pablo Tebas; William G. Powderly; Steven L. Teitelbaum; F. Patrick Ross

Highly active antiretroviral therapy (HAART), which includes HIV protease inhibitors (PIs), has been associated with bone demineralization. To determine if this complication reflects accelerated resorptive activity, we studied the impact of two common HIV PIs, ritonavir and indinavir, on osteoclast formation and function. Surprisingly, we find that ritonavir, but not indinavir, inhibits osteoclast differentiation in a reversible manner and also abrogates bone resorption by disrupting the osteoclast cytoskeleton, without affecting cell number. Ritonavir given in vivo completely blunts parathyroid hormone-induced osteoclastogenesis in mice, which confirms that the drug is bone sparing. In keeping with its antiresorptive properties, ritonavir impairs receptor activator of nuclear factor kappaB ligand-induced (RANKL-induced) activation of NF-kappaB and Akt signaling pathways, both critical to osteoclast formation and function. In particular, ritonavir is found to inhibit RANKL-induced Akt signaling by disrupting the recruitment of TNF receptor-associated factor 6/c-Src complex to lipid rafts. Thus, ritonavir may represent a bone-sparing PI capable of preventing development of osteopenia in patients currently on HAART.


Journal of Clinical Investigation | 2008

RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice

Sergio Vaira; Muhammad Alhawagri; Hideki Kitaura; Roberta Faccio; Deborah V. Novack

Osteoclasts (OCs) function to reabsorb bone and are responsible for the bone loss associated with inflammatory arthritis and osteoporosis. OC numbers are elevated in most disorders of accelerated bone destruction, reflecting altered rates of precursor differentiation and apoptosis. Both of these processes are regulated by the JNK family of MAP kinases. In this study, we have demonstrated that the NF-kappaB subunit RelA/p65 inhibits JNK-mediated apoptosis during a critical period of commitment to the OC phenotype in response to the cytokine RANKL. This RelA/p65-mediated arrest of cell death led to enhanced OC differentiation. Hence, Rela-/- OC precursors displayed prolonged JNK activation in response to RANKL, and this was accompanied by an increase in cell death that prevented efficient differentiation. Although complete blockade of JNK activity inhibits osteoclastogenesis, both short-term blockade in RelA-deficient cultures and suppression of the downstream mediator, Bid rescued apoptosis and differentiation. These antiapoptotic effects were RelA specific, as overexpression of RelA, but not RelB, blocked apoptosis and rescued differentiation in Rela-/- precursors. Thus, RelA blocks a RANKL-induced, apoptotic JNK-Bid pathway, thereby promoting OC differentiation. Consistent with this, mice lacking RelA/p65 in the hematopoietic compartment were shown to have a deficient osteoclastogenic response to RANKL and were protected from arthritis-induced osteolysis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

RelB is the NF-κB subunit downstream of NIK responsible for osteoclast differentiation

Sergio Vaira; Trevor Johnson; Angela C. Hirbe; Muhammad Alhawagri; Benedicte Sammut; Julie O'Neal; Wei Zou; Katherine N. Weilbaecher; Roberta Faccio; Deborah V. Novack

NF-κB inducing kinase (NIK) is required for osteoclastogenesis in response to pathologic stimuli, and its loss leads to functional blockade of both alternative and classical NF-κB caused by cytoplasmic retention by p100. We now show that deletion of p100 restores the capacity of NIK-deficient osteoclast (OC) precursors to differentiate and normalizes RelB and p65 signaling. Differentiation of NIK−/− precursors is also restored by overexpression of RelB, but not p65. Additionally, RelB−/− precursors fail to form OCs in culture, and this defect is rescued by re-expression of RelB, but not by overexpression of p65. To further support the role of RelB in OCs, we challenged RelB−/− mice with TNF-α in vivo and found a diminished osteoclastogenic response. We then examined tumor-induced osteolysis in both RelB−/− and NIK−/− mice by using the B16 melanoma model. Growth of tumor cells in the bone marrow was similar to WT controls, but the absence of either RelB or NIK completely blocked the tumor-induced loss of trabecular bone. Thus, the alternative NF-κB pathway, culminating in activation of RelB, has a key and specific role in the differentiation of OCs that cannot be compensated for by p65.


Journal of Clinical Investigation | 2007

Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCγ2 signaling axis in mice

Daniel B. Graham; Charles M. Robertson; Jhoanne Bautista; Francesca Mascarenhas; M. Julia Diacovo; Vivianne Montgrain; Siu Kit Lam; Viviana Cremasco; W. Michael Dunne; Roberta Faccio; Craig M. Coopersmith; Wojciech Swat

Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C-gamma2 (PLC-gamma2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-gamma2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav.

Collaboration


Dive into the Roberta Faccio's collaboration.

Top Co-Authors

Avatar

Deborah V. Novack

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

F. Patrick Ross

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Steven L. Teitelbaum

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Viviana Cremasco

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Katherine N. Weilbaecher

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinming Su

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Aude-Helene Capietto

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Corinne E. Decker

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kaihua Zhang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge