Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Gualdani is active.

Publication


Featured researches published by Roberta Gualdani.


Pain | 2013

Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel.

Serena Materazzi; Silvia Benemei; Roberta Gualdani; Gaetano De Siena; Nisha Vastani; David A. Andersson; Gabriela Trevisan; Maria Rosa Moncelli; Xiaomei Wei; Gregory Dussor; Federica Pollastro; Riccardo Patacchini; Giovanni Appendino; Pierangelo Geppetti; Romina Nassini

Summary Parthenolide, a major constituent of feverfew, acts as a partial agonist of TRPA1. Parthenolide’s ability to target TRPA1 could explain its therapeutic effects on migraine. Abstract Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene‐related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew’s antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1‐expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP‐mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.


Scientific Reports | 2013

A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain

Cristina Nativi; Roberta Gualdani; Elisa Dragoni; Lorenzo Di Cesare Mannelli; Silvia Sostegni; Martina Norcini; Gabriele Gabrielli; Giancarlo la Marca; Barbara Richichi; Oscar Francesconi; Maria Rosa Moncelli; Carla Ghelardini; Stefano Roelens

Neuropathic pain (NeP) is generally considered an intractable problem, which becomes compelling in clinical practice when caused by highly effective chemotherapeutics, such as in the treatment of cancer with oxaliplatin (OXA) and related drugs. In the present work we describe a structurally new compound, ADM_09, which proved to effectively revert OXA-induced NeP in vivo in rats without eliciting the commonly observed negative side-effects. ADM_09 does not modify normal behavior in rats, does not show any toxicity toward astrocyte cell cultures, nor any significant cardiotoxicity. Patch-clamp recordings demonstrated that ADM_09 is an effective antagonist of the nociceptive sensor channel TRPA1, which persistently blocks mouse as well as human variants of TRPA1. A dual-binding mode of action has been proposed for ADM_09, in which a synergic combination of calcium-mediated binding of the carnosine residue and disulphide-bridge-forming of the lipoic acid residue accounts for the observed persistent blocking activity toward the TRPA1 channel.


Molecules | 2016

The Chemistry and Pharmacology of Citrus Limonoids

Roberta Gualdani; Maria Maddalena Cavalluzzi; Giovanni Lentini; Solomon Habtemariam

Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.


Pharmacology Research & Perspectives | 2015

Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine

Roberta Gualdani; Francesco Tadini-Buoninsegni; Mariagrazia Roselli; Ivana Defrenza; Marialessandra Contino; Nicola Antonio Colabufo; Giovanni Lentini

Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m‐hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time‐ and voltage‐dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m‐hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta‐position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds.


ACS Chemical Neuroscience | 2015

Lipoic-Based TRPA1/TRPV1 antagonist to treat orofacial pain

Roberta Gualdani; Stefania Ceruti; Giulia Magni; Davide Merli; Lorenzo Di Cesare Mannelli; Oscar Francesconi; Barbara Richichi; Giancarlo la Marca; Carla Ghelardini; Maria Rosa Moncelli; Cristina Nativi

Inflammation of the trigeminal nerve is considered one of the most painful conditions known to humankind. The diagnosis is often difficult; moreover, safe and effective pharmacological treatments are lacking. A new molecule, ADM_12, formed by a lipoic and omotaurine residues covalently linked, is here reported. In vitro and in vivo tests showed that ADM_12 is a very attractive original compound presenting (i) a remarkable safety profile; (ii) a high binding constant versus TRPA1; (iii) an intriguing behavior versus TRPV1; and (iv) the ability to significantly and persistently reduce mechanical facial allodynia in rats. Noteworthy, by testing ADM_12, we shed light on the unprecedented involvement of TRPA1 and TRPV1 channels in orofacial pain.


Current Medicinal Chemistry | 2016

Recent Trends in the Discovery of Small Molecule Blockers of Sodium Channels.

Roberta Gualdani; Maria Maddalena Cavalluzzi; Giovanni Lentini

Voltage-gated sodium channels (VGSC) are responsible for the selective influx of sodium ions in excitable cells. A number of physiological phenomena such as muscle contraction, pain sensation, processing of neuronal information in the brain as well as neuronal regulation of peripheral tissues rely on the activity of these channels. On the other hand, abnormal activity of VGSC are implicated in several pathological processes (e.g., cardiac arrhythmias, epilepsy, and chronic pain) which in some cases (e.g., channelopathies such as myotonias) are linked to specific gene mutations. As a result, VGSC have never stopped attracting the attention of medicinal chemists and the quest for novel drugs to treat these ion channels-associated diseases continues. In this review, VGSC blocking agents reported in the last lustrum are scrutinised with the aim to give a medicinal chemistry perspective on the most interesting compounds classified on the basis of (i) potential therapeutic application, (ii) targeted VGSC isoforms, and (iii) chemical scaffolds. Finally, the clinical potential of selected drug candidates from each chemotype is evaluated by comparing their ligand efficiency metrics. Possible routes for improvement of these preclinical candidates are also discussed.


Biophysical Chemistry | 2017

Discovery of a new mexiletine-derived agonist of the hERG K+ channel

Roberta Gualdani; Maria Maddalena Cavalluzzi; Francesco Tadini-Buoninsegni; Giovanni Lentini

The human Ether-a-go-go Related Gene (hERG) potassium channel plays a central role in the rapid component (IKr) of cardiac action potential repolarization phase. A large number of structurally different compounds block hERG and cause a high risk of arrhythmias. Among the drugs that block hERG channel, a few compounds have been identified as hERG channel activators. Such compounds may be useful, at least in theory, for the treatment of long term QT syndrome. Here we describe a new activator of hERG channel, named MC450. This compound is a symmetric urea, derived from (R)-mexiletine. Using patch-clamp recordings, we found that MC450 increased the activation current of hERG channel, with an EC50 of 41±4μM. Moreover MC450 caused a depolarizing shift in the voltage dependence of inactivation from -64.1±1.2mV (control), to -35.9±1.4mV, whereas it had no effect on the voltage dependence of activation. Furthermore, MC450 slowed current inactivation and the effect of MC450 was attenuated by the inactivation-impaired double mutant G628C/S631C.


Cellular Physiology and Biochemistry | 2018

Molecular Insights into hERG Potassium Channel Blockade by Lubeluzole.

Roberta Gualdani; Maria Maddalena Cavalluzzi; Francesco Tadini-Buoninsegni; Marino Convertino; Philippe Gailly; Anna Stary-Weinzinger; Giovanni Lentini

Background/Aims: Lubeluzole is a benzothiazole derivative that has shown neuroprotective properties in preclinical models of ischemic stroke. However, clinical research on lubeluzole is now at a standstill, since lubeluzole seems to be associated with the acquired long QT syndrome and ventricular arrhythmias. Since the cardiac cellular effects of lubeluzole have not been described thus far, an explanation for the lubeluzole-induced QT interval prolongation is lacking. Methods: We tested the affinity of lubeluzole, its enantiomer, and the racemate for hERG channel using the patch-clamp technique. We synthesized and tested two simplified model compounds corresponding to two moieties included in the lubeluzole structure. The obtained experimental results were rationalized by docking simulation on the recently reported cryo-electron microscopy (cryo-EM) structure of hERG. Group efficiency analysis was performed in order to individuate the fragment most contributing to binding. Results: We found that lubeluzole and its R enantiomer are highly potent inhibitors of human ether-ago-go-related gene (hERG) channel with an IC50 value of 12.9 ± 0.7 nM and 11.3 ± 0.8 nM, respectively. In the presence of lubeluzole, steady-state activation and inactivation of hERG channel were shifted to more negative potentials and inactivation kinetics was accelerated. Mutations of aromatic residues (Y652A and F656A) in the channel inner cavity significantly reduced the inhibitory effect of lubeluzole. Molecular docking simulations performed on the near atomic resolution cryo-electron microscopy structures of hERG supported the role of Y652 and F656 as the main contributors to high affinity binding. Group efficiency analysis indicated that both 1,3-benzothiazol-2-amine and 3-aryloxy-2-propanolamine moieties contribute to drug binding with the former giving higher contribution. Conclusions: This study suggests the possibility to modulate lubeluzole hERG blockade by introducing suitable substituents onto one or both constituting portions of the parent compound in order to either reduce potency (i. e. torsadogenic potential) or potentiate affinity (useful for class III antiarrhythmic and anticancer agent development).


Journal of Medicinal Chemistry | 2012

Mimicking the intramolecular hydrogen bond: synthesis, biological evaluation, and molecular modeling of benzoxazines and quinazolines as potential antimalarial agents.

Sandra Gemma; Caterina Camodeca; Margherita Brindisi; Simone Brogi; Gagan Kukreja; Sanil Kunjir; Emanuele Gabellieri; Leonardo Lucantoni; Annette Habluetzel; Donatella Taramelli; Nicoletta Basilico; Roberta Gualdani; Francesco Tadini-Buoninsegni; Gianluca Bartolommei; Maria Rosa Moncelli; Rowena E. Martin; Robert L. Summers; Stefania Lamponi; Luisa Savini; Isabella Fiorini; Massimo Valoti; Ettore Novellino; Giuseppe Campiani; Stefania Butini


Journal of Medicinal Chemistry | 2017

Lipoyl-Homotaurine Derivative (ADM_12) Reverts Oxaliplatin-Induced Neuropathy and Reduces Cancer Cells Malignancy by Inhibiting Carbonic Anhydrase IX (CAIX)

Marco Fragai; Giuseppina Comito; Lorenzo Di Cesare Mannelli; Roberta Gualdani; Vito Calderone; Alexandra Louka; Barbara Richichi; Oscar Francesconi; Andrea Angeli; Alessio Nocentini; Paola Gratteri; Paola Chiarugi; Carla Ghelardini; Francesco Tadini-Buoninsegni; Claudiu T. Supuran; Cristina Nativi

Collaboration


Dive into the Roberta Gualdani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge