Roberta Leonardi
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberta Leonardi.
The EMBO Journal | 2011
Kezhong Zhang; Shiyu Wang; Jyoti D. Malhotra; Justin R. Hassler; Sung Hoon Back; Guohui Wang; Lin Chang; Wenbo Xu; Hongzhi Miao; Roberta Leonardi; Y Eugene Chen; Suzanne Jackowski; Randal J. Kaufman
The endoplasmic reticulum (ER) is the cellular organelle responsible for protein folding and assembly, lipid and sterol biosynthesis, and calcium storage. The unfolded protein response (UPR) is an adaptive intracellular stress response to accumulation of unfolded or misfolded proteins in the ER. In this study, we show that the most conserved UPR sensor inositol‐requiring enzyme 1 α (IRE1α), an ER transmembrane protein kinase/endoribonuclease, is required to maintain hepatic lipid homeostasis under ER stress conditions through repressing hepatic lipid accumulation and maintaining lipoprotein secretion. To elucidate physiological roles of IRE1α‐mediated signalling in the liver, we generated hepatocyte‐specific Ire1α‐null mice by utilizing an albumin promoter‐controlled Cre recombinase‐mediated deletion. Deletion of Ire1α caused defective induction of genes encoding functions in ER‐to‐Golgi protein transport, oxidative protein folding, and ER‐associated degradation (ERAD) of misfolded proteins, and led to selective induction of pro‐apoptotic UPR trans‐activators. We show that IRE1α is required to maintain the secretion efficiency of selective proteins. In the absence of ER stress, mice with hepatocyte‐specific Ire1α deletion displayed modest hepatosteatosis that became profound after induction of ER stress. Further investigation revealed that IRE1α represses expression of key metabolic transcriptional regulators, including CCAAT/enhancer‐binding protein (C/EBP) β, C/EBPδ, peroxisome proliferator‐activated receptor γ (PPARγ), and enzymes involved in triglyceride biosynthesis. IRE1α was also found to be required for efficient secretion of apolipoproteins upon disruption of ER homeostasis. Consistent with a role for IRE1α in preventing intracellular lipid accumulation, mice with hepatocyte‐specific deletion of Ire1α developed severe hepatic steatosis after treatment with an ER stress‐inducing anti‐cancer drug Bortezomib, upon expression of a misfolding‐prone human blood clotting factor VIII, or after partial hepatectomy. The identification of IRE1α as a key regulator to prevent hepatic steatosis provides novel insights into ER stress mechanisms in fatty liver diseases associated with toxic liver injuries.
Journal of Biological Chemistry | 2012
Roberta Leonardi; Chitra Subramanian; Suzanne Jackowski; Charles O. Rock
Background: Reductive carboxylation by isocitrate dehydrogenase (IDH) is required for hypoxic growth, and IDH mutations are associated with cancer. Results: Reductive carboxylation by IDH is inhibited by NADP+ and isocitrate and inactivated by cancer-associated mutations. Conclusion: Cancer-associated IDH mutations inactivate reductive carboxylation. Significance: IDH mutations may reduce the capacity of cells to produce acetyl-CoA via reductive carboxylation. Isocitrate dehydrogenase (IDH) is a reversible enzyme that catalyzes the NADP+-dependent oxidative decarboxylation of isocitrate (ICT) to α-ketoglutarate (αKG) and the NADPH/CO2-dependent reductive carboxylation of αKG to ICT. Reductive carboxylation by IDH1 was potently inhibited by NADP+ and, to a lesser extent, by ICT. IDH1 and IDH2 with cancer-associated mutations at the active site arginines were unable to carry out the reductive carboxylation of αKG. These mutants were also defective in ICT decarboxylation and converted αKG to 2-hydroxyglutarate using NADPH. These mutant proteins were thus defective in both of the normal reactions of IDH. Biochemical analysis of heterodimers between wild-type and mutant IDH1 subunits showed that the mutant subunit did not inactivate reductive carboxylation by the wild-type subunit. Cells expressing the mutant IDH are thus deficient in their capacity for reductive carboxylation and may be compromised in their ability to produce acetyl-CoA under hypoxia or when mitochondrial function is otherwise impaired.
Journal of Biological Chemistry | 2007
Marco Kriek; Filipa Martins; Roberta Leonardi; Shirley A. Fairhurst; David J. Lowe; Peter L. Roach
Thiamine is biosynthesized by combining two heterocyclic precursors. In Escherichia coli and other anaerobes, one of the heterocycles, 4-methyl-5-(β-hydroxyethyl) thiazole phosphate, is biosynthesized from 1-deoxyxylulose-5-phosphate, tyrosine, and cysteine. Genetic evidence has identified thiH, thiG, thiS, and thiF as essential for thiazole biosynthesis in E. coli. In this paper, we describe the measurement of the thiazole phosphate-forming reaction using purified protein components. The activity is shown to require four proteins isolated as heterodimers: ThiGH and ThiFS. Reconstitution of the [4Fe-4S] cluster in ThiH was essential for activity, as was the use of ThiS in the thiocarboxylate form. Spectroscopic studies with ThiGH strongly suggested that S-adenosylmethionine (AdoMet) bound to the [4Fe-4S] cluster, which became more susceptible to reduction to the +1 state. Assays of thiazole phosphate formation showed that, in addition to the proteins, Dxp, tyrosine, AdoMet, and a reductant were required. The analysis showed that no more than 1 mol eq of thiazole phosphate was formed per ThiGH. Furthermore, for each mole of thiazole-P formed, 1 eq of AdoMet and 1 eq of tyrosine were utilized, and 1 eq of 5′-deoxyadenosine was produced. These results demonstrate that ThiH is a member of the “radical-AdoMet” family and support a mechanistic hypothesis in which AdoMet is reductively cleaved to yield a highly reactive 5′-deoxyadenosyl radical. This radical is proposed to abstract the phenolic hydrogen atom from tyrosine, and the resultant substrate radical cleaves to yield dehydroglycine, which is required by ThiG for the thiazole cyclization reaction.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Roberta Leonardi; Charles O. Rock; Suzanne Jackowski; Yong-Mei Zhang
The human isoform 2 of pantothenate kinase (PanK2) is localized to the mitochondria, and mutations in this protein are associated with a progressive neurodegenerative disorder. PanK2 inhibition by acetyl-CoA is so stringent (IC50 < 1 μM) that it is unclear how the enzyme functions in the presence of intracellular CoA concentrations. Palmitoylcarnitine was discovered to be a potent activator of PanK2 that functions to competitively antagonize acetyl-CoA inhibition. Acetyl-CoA was a competitive inhibitor of purified PanK2 with respect to ATP. The interaction between PanK2 and acetyl-CoA was stable enough that a significant proportion of the purified protein was isolated as the PanK2·acetyl-CoA complex. The long-chain acylcarnitine activation of PanK2 explains how PanK2 functions in vivo, by providing a positive regulatory mechanism to counteract the negative regulation of PanK2 activity by acetyl-CoA. Our results suggest that PanK2 is located in the mitochondria to sense the levels of palmitoylcarnitine and up-regulate CoA biosynthesis in response to an increased mitochondrial demand for the cofactor to support β-oxidation.
PLOS ONE | 2010
Roberta Leonardi; Jerold E. Rehg; Charles O. Rock; Suzanne Jackowski
Coenzyme A (CoA) biosynthesis is regulated by the pantothenate kinases (PanK), of which there are four active isoforms. The PanK1 isoform is selectively expressed in liver and accounted for 40% of the total PanK activity in this organ. CoA synthesis was limited using a Pank1 −/− knockout mouse model to determine whether the regulation of CoA levels was critical to liver function. The elimination of PanK1 reduced hepatic CoA levels, and fasting triggered a substantial increase in total hepatic CoA in both Pank1 −/− and wild-type mice. The increase in hepatic CoA during fasting was blunted in the Pank1 −/− mouse, and resulted in reduced fatty acid oxidation as evidenced by abnormally high accumulation of long-chain acyl-CoAs, acyl-carnitines, and triglycerides in the form of lipid droplets. The Pank1 −/− mice became hypoglycemic during a fast due to impaired gluconeogenesis, although ketogenesis was normal. These data illustrate the importance of PanK1 and elevated liver CoA levels during fasting to support the metabolic transition from glucose utilization and fatty acid synthesis to gluconeogenesis and fatty acid oxidation. The findings also suggest that PanK1 may be a suitable target for therapeutic intervention in metabolic disorders that feature hyperglycemia and hypertriglyceridemia.
Journal of Biological Chemistry | 2009
Roberta Leonardi; Matthew W. Frank; Pamela Jackson; Charles O. Rock; Suzanne Jackowski
Phosphoethanolamine cytidylyltransferase (ECT) catalyzes the rate-controlling step in a major pathway for the synthesis of phosphatidylethanolamine (PtdEtn). Hepatocyte-specific deletion of the ECT gene in mice resulted in normal appearing animals without overt signs of liver injury or inflammation. The molecular species of PtdEtn in the ECT-deficient livers were significantly altered compared with controls and matched the composition of the phosphatidylserine (PtdSer) pool, illustrating the complete reliance on the PtdSer decarboxylase pathway for PtdEtn synthesis. PtdSer structure was controlled by the substrate specificity of PtdSer synthase that selectively converted phosphatidylcholine molecular species containing stearate paired with a polyunsaturated fatty acid to PtdSer. There was no evidence for fatty acid remodeling of PtdEtn. The elimination of diacylglycerol utilization by the CDP-ethanolamine pathway led to a 10-fold increase in triacylglycerols in the ECT-deficient hepatocytes that became engorged with lipid droplets. Triacylglycerol accumulation was associated with a significant elevation in the expression of the transcription factors and target genes that drive de novo lipogenesis. The absence of the ECT pathway for diacylglycerol utilization at the endoplasmic reticulum triggers increased fatty acid synthesis to support the formation of triacylglycerols leading to liver steatosis.
Journal of Biological Chemistry | 2007
Bum Soo Hong; Guillermo Senisterra; Wael M. Rabeh; Masoud Vedadi; Roberta Leonardi; Yong-Mei Zhang; Charles O. Rock; Suzanne Jackowski; Hee-Won Park
Pantothenate kinase (PanK) catalyzes the first step in CoA biosynthesis and there are three human genes that express four isoforms with highly conserved catalytic core domains. Here we report the homodimeric structures of the catalytic cores of PanK1α and PanK3 in complex with acetyl-CoA, a feedback inhibitor. Each monomer adopts a fold of the actin kinase superfamily and the inhibitor-bound structures explain the basis for the allosteric regulation by CoA thioesters. These structures also provide an opportunity to investigate the structural effects of the PanK2 mutations that have been implicated in neurodegeneration. Biochemical and thermodynamic analyses of the PanK3 mutant proteins corresponding to PanK2 mutations show that mutant proteins with compromised activities and/or stabilities correlate with a higher incidence of the early onset of disease.
FEBS Letters | 2007
Roberta Leonardi; Yong-Mei Zhang; Athanasios Lykidis; Charles O. Rock; Suzanne Jackowski
Coenzyme A (CoA) biosynthesis is initiated by pantothenate kinase (PanK) and CoA levels are controlled through differential expression and feedback regulation of PanK isoforms. PanK2 is a mitochondrial protein in humans, but comparative genomics revealed that acquisition of a mitochondrial targeting signal was limited to primates. Human and mouse PanK2 possessed similar biochemical properties, with inhibition by acetyl‐CoA and activation by palmitoylcarnitine. Mouse PanK2 localized in the cytosol, and the expression of PanK2 was higher in human brain compared to mouse brain. Differences in expression and subcellular localization should be considered in developing a mouse model for human PanK2 deficiency.
PLOS ONE | 2012
Matthew R. Garcia; Roberta Leonardi; Yong-Mei Zhang; Jerold E. Rehg; Suzanne Jackowski
Pantothenate kinase (PanK) phosphorylates pantothenic acid (vitamin B5) and controls the overall rate of coenzyme A (CoA) biosynthesis. Pank1 gene deletion in mice results in a metabolic phenotype where fatty acid oxidation and gluconeogenesis are impaired in the fasted state, leading to mild hypoglycemia. Inactivating mutations in the human PANK2 gene lead to childhood neurodegeneration, but Pank2 gene inactivation in mice does not elicit a phenotype indicative of the neuromuscular symptoms or brain iron accumulation that accompany the human disease. Pank1/Pank2 double knockout (dKO) mice were derived to determine if the mild phenotypes of the single knockout mice are due to the ability of the two isoforms to compensate for each other in CoA biosynthesis. Postnatal development was severely affected in the dKO mice. The dKO pups developed progressively severe hypoglycemia and hyperketonemia by postnatal day 10 leading to death by day 17. Hyperketonemia arose from impaired whole-body ketone utilization illustrating the requirement for CoA in energy generation from ketones. dKO pups had reduced CoA and decreased fatty acid oxidation coupled with triglyceride accumulation in liver. dKO hepatocytes could not maintain the NADH levels compared to wild-type hepatocytes. These results revealed an important link between CoA and NADH levels, which was reflected by deficiencies in hepatic oleate synthesis and gluconeogenesis. The data indicate that PanK1 and PanK2 can compensate for each other to supply tissue CoA, but PanK1 is more important to CoA levels in liver whereas PanK2 contributes more to CoA synthesis in the brain.
PLOS ONE | 2012
Adolfo Alfonso-Pecchio; Matthew R. Garcia; Roberta Leonardi; Suzanne Jackowski
The pantothenate kinases (PanK) catalyze the first and the rate-limiting step in coenzyme A (CoA) biosynthesis and regulate the amount of CoA in tissues by differential isoform expression and allosteric interaction with metabolic ligands. The four human and mouse PanK proteins share a homologous carboxy-terminal catalytic domain, but differ in their amino-termini. These unique termini direct the isoforms to different subcellular compartments. PanK1α isoforms were exclusively nuclear, with preferential association with the granular component of the nucleolus during interphase. PanK1α also associated with the perichromosomal region in condensing chromosomes during mitosis. The PanK1β and PanK3 isoforms were cytosolic, with a portion of PanK1β associated with clathrin-associated vesicles and recycling endosomes. Human PanK2, known to associate with mitochondria, was specifically localized to the intermembrane space. Human PanK2 was also detected in the nucleus, and functional nuclear localization and export signals were identified and experimentally confirmed. Nuclear PanK2 trafficked from the nucleus to the mitochondria, but not in the other direction, and was absent from the nucleus during G2 phase of the cell cycle. The localization of human PanK2 in these two compartments was in sharp contrast to mouse PanK2, which was exclusively cytosolic. These data demonstrate that PanK isoforms are differentially compartmentalized allowing them to sense CoA homeostasis in different cellular compartments and enable interaction with regulatory ligands produced in these same locations.