Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Mancini is active.

Publication


Featured researches published by Roberta Mancini.


Nature Cell Biology | 2010

GM1 structure determines SV40-induced membrane invagination and infection

Helge Ewers; Winfried Römer; Alicia E. Smith; Kirsten Bacia; Serge Dmitrieff; Wengang Chai; Roberta Mancini; Jürgen Kartenbeck; Valérie Chambon; Ludwig Berland; Ariella Oppenheim; Günter Schwarzmann; Ten Feizi; Petra Schwille; Pierre Sens; Ari Helenius; Ludger Johannes

Incoming simian virus 40 (SV40) particles enter tight-fitting plasma membrane invaginations after binding to the carbohydrate moiety of GM1 gangliosides in the host cell plasma membrane through pentameric VP1 capsid proteins. This is followed by activation of cellular signalling pathways, endocytic internalization and transport of the virus via the endoplasmic reticulum to the nucleus. Here we show that the association of SV40 (as well as isolated pentameric VP1) with GM1 is itself sufficient to induce dramatic membrane curvature that leads to the formation of deep invaginations and tubules not only in the plasma membrane of cells, but also in giant unilamellar vesicles (GUVs). Unlike native GM1 molecules with long acyl chains, GM1 molecular species with short hydrocarbon chains failed to support such invagination, and endocytosis and infection did not occur. To conceptualize the experimental data, a physical model was derived based on energetic considerations. Taken together, our analysis indicates that SV40, other polyoma viruses and some bacterial toxins (Shiga and cholera) use glycosphingolipids and a common pentameric protein scaffold to induce plasma membrane curvature, thus directly promoting their endocytic uptake into cells.


Journal of Virology | 2009

Host Cell Factors and Functions Involved in Vesicular Stomatitis Virus Entry

Hrefna Kristin Johannsdottir; Roberta Mancini; Jürgen Kartenbeck; Lea Amato; Ari Helenius

ABSTRACT Vesicular stomatitis virus (VSV) is an animal virus that based on electron microscopy and its dependence on acidic cellular compartments for infection is thought to enter its host cells in a clathrin-dependent manner. The exact cellular mechanism, however, is largely unknown. In this study, we characterized the entry kinetics of VSV and elucidated viral requirements for host cell factors during infection in HeLa cells. We found that endocytosis of VSV was a fast process with a half time of 2.5 to 3 min and that acid activation occurred within 1 to 2 min after internalization in early endosomes. The majority of viral particles were endocytosed in a clathrin-based, dynamin-2-dependent manner. Although associated with some of the surface-bound viruses, the classical adaptor protein complex AP-2 was not required for infection. Time-lapse microscopy revealed that the virus either entered preformed clathrin-coated pits or induced de novo formation of pits. Dynamin-2 was recruited to plasma membrane-confined virus particles. Thus, VSV can induce productive internalization by exploiting a specific combination of the clathrin-associated proteins and cellular functions.


Journal of Virology | 2011

Role of Endosomes in Simian Virus 40 Entry and Infection

Sabrina Engel; Thomas Heger; Roberta Mancini; Fabian Herzog; Jiirgen Kartenbeck; Arnold Hayer; Ari Helenius

ABSTRACT After binding to its cell surface receptor ganglioside GM1, simian virus 40 (SV40) is endocytosed by lipid raft-mediated endocytosis and slowly transported to the endoplasmic reticulum, where partial uncoating occurs. We analyzed the intracellular pathway taken by the virus in HeLa and CV-1 cells by using a targeted small interfering RNA (siRNA) silencing screen, electron microscopy, and live-cell imaging as well as by testing a variety of cellular inhibitors and other perturbants. We found that the virus entered early endosomes, late endosomes, and probably endolysosomes before reaching the endoplasmic reticulum and that this pathway was part of the infectious route. The virus was especially sensitive to a variety of perturbations that inhibited endosome acidification and maturation. Contrary to our previous models, which postulated the passage of the virus through caveolin-rich organelles that we called caveosomes, we conclude that SV40 depends on the classical endocytic pathway for infectious entry.


Cell Host & Microbe | 2010

Entry of bunyaviruses into mammalian cells.

Pierre-Yves Lozach; Roberta Mancini; David Bitto; Roger Meier; Lisa Oestereich; Anna K. Överby; Ralf F. Pettersson; Ari Helenius

Summary The Bunyaviridae constitute a large family of enveloped animal viruses, many members of which cause serious diseases. However, early bunyavirus-host cell interactions and entry mechanisms remain largely uncharacterized. Investigating Uukuniemi virus, a bunyavirus of the genus Phlebovirus, we found that virus attachment to the cell surface was specific but inefficient, with 25% of bound viruses being endocytosed within 10 min, mainly via noncoated vesicles. The viruses entered Rab5a+ early endosomes and, subsequently, Rab7a+ and LAMP-1+ late endosomes. Acid-activated penetration, occurring 20–40 min after internalization, required maturation of early to late endosomes. The pH threshold for viral membrane fusion was 5.4, and entry was sensitive to temperatures below 25°C. Together, our results indicate that Uukuniemi virus penetrates host cells by acid-activated membrane fusion from late endosomal compartments. This study also highlights the importance of the degradative branch of the endocytic pathway in facilitating entry of late-penetrating viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cullin-3 regulates late endosome maturation

Jatta Huotari; Nathalie Meyer-Schaller; Michaela Hubner; Sarah Stauffer; Nadja Katheder; Peter Horvath; Roberta Mancini; Ari Helenius; Matthias Peter

Cullin-3 (Cul3) functions as a scaffolding protein in the Bric-a-brac, Tramtrack, Broad-complex (BTB)–Cul3–Rbx1 ubiquitin E3 ligase complex. Here, we report a previously undescribed role for Cul3 complexes in late endosome (LE) maturation. RNAi-mediated depletion of Cul3 results in a trafficking defect of two cargoes of the endolysosomal pathway, influenza A virus (IAV) and epidermal growth factor receptor (EGFR). IAV is able to reach an acidic endosomal compartment, coinciding with LE/lysosome (LY) markers. However, it remains trapped or the capsid is unable to uncoat after penetration into the cytosol. Similarly, activation and subsequent ubiquitination of EGFR appear normal, whereas downstream EGFR degradation is delayed and its ligand EGF accumulates in LE/LYs. Indeed, Cul3-depleted cells display severe morphological defects in LEs that could account for these trafficking defects; they accumulate acidic LE/LYs, and some cells become highly vacuolated, with enlarged Rab7-positive endosomes. Together, these results suggest a crucial role of Cul3 in regulating late steps in the endolysosomal trafficking pathway.


Journal of Virology | 2014

Genome-Wide Small Interfering RNA Screens Reveal VAMP3 as a Novel Host Factor Required for Uukuniemi Virus Late Penetration

Roger Meier; Andrea Franceschini; Peter Horvath; Marilou Tetard; Roberta Mancini; Christian von Mering; Ari Helenius; Pierre-Yves Lozach

ABSTRACT The Bunyaviridae constitute a large family of enveloped animal viruses, many of which are important emerging pathogens. How bunyaviruses enter and infect mammalian cells remains largely uncharacterized. We used two genome-wide silencing screens with distinct small interfering RNA (siRNA) libraries to investigate host proteins required during infection of human cells by the bunyavirus Uukuniemi virus (UUKV), a late-penetrating virus. Sequence analysis of the libraries revealed that many siRNAs in the screens inhibited infection by silencing not only the intended targets but additional genes in a microRNA (miRNA)-like manner. That the 7-nucleotide seed regions in the siRNAs can cause a perturbation in infection was confirmed by using synthetic miRNAs (miRs). One of the miRs tested, miR-142-3p, was shown to interfere with the intracellular trafficking of incoming viruses by regulating the v-SNARE VAMP3, a strong hit shared by both siRNA screens. Inactivation of VAMP3 by the tetanus toxin led to a block in infection. Using fluorescence-based techniques in fixed and live cells, we found that the viruses enter VAMP3+ endosomal vesicles 5 min after internalization and that colocalization was maximal 15 min thereafter. At this time, LAMP1 was associated with the VAMP3+ virus-containing endosomes. In cells depleted of VAMP3, viruses were mainly trapped in LAMP1-negative compartments. Together, our results indicated that UUKV relies on VAMP3 for penetration, providing an indication of added complexity in the trafficking of viruses through the endocytic network. IMPORTANCE Bunyaviruses represent a growing threat to humans and livestock globally. Unfortunately, relatively little is known about these emerging pathogens. We report here the first human genome-wide siRNA screens for a bunyavirus. The screens resulted in the identification of 562 host cell factors with a potential role in cell entry and virus replication. To demonstrate the robustness of our approach, we confirmed and analyzed the role of the v-SNARE VAMP3 in Uukuniemi virus entry and infection. The information gained lays the basis for future research into the cell biology of bunyavirus infection and new antiviral strategies. In addition, by shedding light on serious caveats in large-scale siRNA screening, our experimental and bioinformatics procedures will be valuable in the comprehensive analysis of past and future high-content screening data.


Journal of Virology | 2014

Hantavirus Gn and Gc Glycoproteins Self-Assemble into Virus-Like Particles

Rodrigo Acuña; Nicolás Cifuentes-Muñoz; Chantal L. Márquez; Manuela Bulling; Jonas Klingström; Roberta Mancini; Pierre-Yves Lozach; Nicole D. Tischler

ABSTRACT How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.


Journal of General Virology | 2015

Acidification triggers Andes hantavirus membrane fusion and rearrangement of Gc into a stable post-fusion homotrimer.

Rodrigo Acuña; Eduardo A. Bignon; Roberta Mancini; Pierre-Yves Lozach; Nicole D. Tischler

The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free in vitro systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells.


Journal of Virology | 2016

Uukuniemi Virus as a Tick-Borne Virus Model.

Magalie Mazelier; Ronan Nicolas Rouxel; Michael Thomas Zumstein; Roberta Mancini; Lesley Bell-Sakyi; Pierre-Yves Lozach

ABSTRACT In the last decade, novel tick-borne pathogenic phleboviruses in the family Bunyaviridae, all closely related to Uukuniemi virus (UUKV), have emerged on different continents. To reproduce the tick-mammal switch in vitro, we first established a reverse genetics system to rescue UUKV with a genome close to that of the authentic virus isolated from the Ixodes ricinus tick reservoir. The IRE/CTVM19 and IRE/CTVM20 cell lines, both derived from I. ricinus, were susceptible to the virus rescued from plasmid DNAs and supported production of the virus over many weeks, indicating that infection was persistent. The glycoprotein GC was mainly highly mannosylated on tick cell-derived viral progeny. The second envelope viral protein, GN, carried mostly N-glycans not recognized by the classical glycosidases peptide-N-glycosidase F (PNGase F) and endoglycosidase H (Endo H). Treatment with β-mercaptoethanol did not impact the apparent molecular weight of GN. On viruses originating from mammalian BHK-21 cells, GN glycosylations were exclusively sensitive to PNGase F, and the electrophoretic mobility of the protein was substantially slower after the reduction of disulfide bonds. Furthermore, the amount of viral nucleoprotein per focus forming unit differed markedly whether viruses were produced in tick or BHK-21 cells, suggesting a higher infectivity for tick cell-derived viruses. Together, our results indicate that UUKV particles derived from vector tick cells have glycosylation and structural specificities that may influence the initial infection in mammalian hosts. This study also highlights the importance of working with viruses originating from arthropod vector cells in investigations of the cell biology of arbovirus transmission and entry into mammalian hosts. IMPORTANCE Tick-borne phleboviruses represent a growing threat to humans globally. Although ticks are important vectors of infectious emerging diseases, previous studies have mainly involved virus stocks produced in mammalian cells. This limitation tends to minimize the importance of host alternation in virus transmission to humans and initial infection at the molecular level. With this study, we have developed an in vitro tick cell-based model that allows production of the tick-borne Uukuniemi virus to high titers. Using this system, we found that virions derived from tick cells have specific structural properties and N-glycans that may enhance virus infectivity for mammalian cells. By shedding light on molecular aspects of tick-derived viral particles, our data illustrate the importance of considering the host switch in studying early virus-mammalian receptor/cell interactions. The information gained here lays the basis for future research on not only tick-borne phleboviruses but also all viruses and other pathogens transmitted by ticks.


Journal of Virology | 2017

Correction for Engel et al., “Role of Endosomes in Simian Virus 40 Entry and Infection”

Sabrina Engel; Thomas Heger; Roberta Mancini; Fabian Herzog; Jürgen Kartenbeck; Arnold Hayer; Ari Helenius

Volume 85, no. 9, p. 4198 – 4211, 2011, https://doi.org/10.1128/JVI.02179-10. Supplemental material: Supplemental files 9 and 10, corresponding to Fig. S1 and S2, were inadvertently omitted. These supplemental files are posted at http://jvi.asm.org/ content/85/9/4198/suppl/DC1. Citation Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J, Hayer A, Helenius A. 2017. Correction for Engel et al., “Role of endosomes in simian virus 40 entry and infection.” J Virol 91:e01059-17. https://doi.org/10.1128/JVI .01059-17. Copyright

Collaboration


Dive into the Roberta Mancini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre-Yves Lozach

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Jürgen Kartenbeck

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Franceschini

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge