Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Menabò is active.

Publication


Featured researches published by Roberta Menabò.


Heart Failure Reviews | 2007

MITOCHONDRIA AND CARDIOPROTECTION

Fabio Di Lisa; Marcella Canton; Roberta Menabò; Nina Kaludercic; Paolo Bernardi

Major factors linking mitochondrial dysfunction with myocardial injury are analyzed along with protective mechanisms elicited by endogenous processes and pharmacological treatments. In particular, a reduced rate of ATP hydrolysis and a slight increase in ROS formation appear to represent the prevailing components of self-defense mechanisms, especially in the case of ischemic preconditioning. These protective processes are activated by signaling pathways, which converge on mitochondria activating the mitochondrial KATP channels and/or inhibiting the mitochondrial permeability transition pore. These pathways can also be stimulated by pharmacological treatments. Another major goal for cardioprotection is decreasing the burst in mitochondrial ROS formation that characterizes post-ischemic reperfusion. Finally, mitochondrial targets for therapeutic intervention may include the switch of substrate being utilized, because inhibition of fatty acid oxidation is associated with cardioprotective effects.


Basic Research in Cardiology | 2009

Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase

Fabio Di Lisa; Nina Kaludercic; Andrea Carpi; Roberta Menabò; Marco Giorgio

Although mitochondria are considered the most relevant site for the formation of reactive oxygen species (ROS) in cardiac myocytes, a major and unsolved issue is where ROS are generated in mitochondria. Respiratory chain is generally indicated as a main site for ROS formation. However, other mitochondrial components are likely to contribute to ROS generation. Recent reports highlight the relevance of monoamine oxidases (MAO) and p66Shc. The importance of these systems in the irreversibility of ischemic heart injury will be discussed along with the cardioprotective effects elicited by both MAO inhibition and p66Shc knockout. Finally, recent evidence will be reviewed that highlight the relevance of mitochondrial ROS formation also in myocardial failure and atherosclerosis.


Biochimica et Biophysica Acta | 1998

THE ROLE OF MITOCHONDRIA IN THE SALVAGE AND THE INJURY OF THE ISCHEMIC MYOCARDIUM

Fabio Di Lisa; Roberta Menabò; Marcella Canton; Valeria Petronilli

The relationships between mitochondrial derangements and cell necrosis are exemplified by the changes in the function and metabolism of mitochondria that occur in the ischemic heart. From a mitochondrial point of view, the evolution of ischemic damage can be divided into three phases. The first is associated with the onset of ischemia, and changes mitochondria from ATP producers into powerful ATP utilizers. During this phase, the inverse operation of F0F1 ATPase maintains the mitochondrial membrane potential by using the ATP made available by glycolysis. The second phase can be identified from the functional and structural alterations of mitochondria caused by prolongation of ischemia, such as decreased utilization of NAD-linked substrates, release of cytochrome c and involvement of mitochondrial channels. These events indicate that the relationship between ischemic damage and mitochondria is not limited to the failure in ATP production. Finally, the third phase links mitochondria to the destiny of the myocytes upon post-ischemic reperfusion. Indeed, depending on the duration and the severity of ischemia, not only is mitochondrial function necessary for cell recovery, but it can also exacerbate cell injury.


Biochimica et Biophysica Acta | 2009

The cardioprotective effects elicited by p66Shc ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury

Andrea Carpi; Roberta Menabò; Nina Kaludercic; Pier Giuseppe Pelicci; Fabio Di Lisa; Marco Giorgio

Although a major contribution to myocardial ischemia-reperfusion (I/R) injury is suggested to be provided by formation of reactive oxygen species (ROS) within mitochondria, sites and mechanisms are far from being elucidated. Besides a dysfunctional respiratory chain, other mitochondrial components, such as monoamine oxidase and p66(Shc), might be involved in oxidative stress. In particular, p66(Shc) has been shown to catalyze the formation of H(2)O(2). The relationship among p66(Shc), ROS production and cardiac damage was investigated by comparing hearts from p66(Shc) knockout mice (p66(Shc-/-)) and wild-type (WT) littermates. Perfused hearts were subjected to 40 min of global ischemia followed by 15 min of reperfusion. Hearts devoid of p66(Shc) were significantly protected from I/R insult as shown by (i) reduced release of lactate dehydrogenase in the coronary effluent (25.7+/-7.49% in p66(Shc-/-) vs. 39.58+/-5.17% in WT); (ii) decreased oxidative stress as shown by a 63% decrease in malondialdehyde formation and 40+/-8% decrease in tropomyosin oxidation. The degree of protection was independent of aging. The cardioprotective efficacy associated with p66(Shc) ablation was comparable with that afforded by other antioxidant interventions and could not be increased by antioxidant co-administration suggesting that p66(Shc) is downstream of other pathways involved in ROS formation. In addition, the absence of p66(Shc) did not affect the protection afforded by ischemic preconditioning. In conclusion, the absence of p66(Shc) reduces the susceptibility to reperfusion injury by preventing oxidative stress. The present findings provide solid and direct evidence that mitochondrial ROS formation catalyzed by p66(Shc) is causally related to reperfusion damage.


Basic Research in Cardiology | 2003

Mitochondria and reperfusion injury. The role of permeability transition.

Fabio Di Lisa; Marcella Canton; Roberta Menabò; Giuliano Dodoni; Paolo Bernardi

Abstract. The viability of the ischemic myocardium is jeopardized by alterations, such as ATP decrease and elevation in intracellular [Ca2+], that are related to derangements in mitochondrial function. Besides these established notions, the elucidation of the apoptotic cascade and the availability of novel methodologies for in situ studies prompted new interest in mitochondria. The characterization of mitochondrial channels provided a contribution that is particularly relevant to cardiovascular research. Here we focus on the role of the permeability transition pore by analyzing the methodological requirements for its characterization, the consequences of its opening and the possible relationships with other mitochondrial functions, especially with the KATP channels.


Biochimica et Biophysica Acta | 2011

Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury

Nina Kaludercic; Andrea Carpi; Roberta Menabò; Fabio Di Lisa; Nazareno Paolocci

Recent evidence highlights monoamine oxidases (MAO) as another prominent source of oxidative stress. MAO are a class of enzymes located in the outer mitochondrial membrane, deputed to the oxidative breakdown of key neurotransmitters such as norepinephrine, epinephrine and dopamine, and in the process generate H(2)O(2). All these monoamines are endowed with potent modulatory effects on myocardial function. Thus, when the heart is subjected to chronic neuro-hormonal and/or peripheral hemodynamic stress, the abundance of circulating/tissue monoamines can make MAO-derived H(2)O(2) production particularly prominent. This is the case of acute cardiac damage due to ischemia/reperfusion injury or, on a more chronic stand, of the transition from compensated hypertrophy to overt ventricular dilation/pump failure. Here, we will first briefly discuss mitochondrial status and contribution to acute and chronic cardiac disorders. We will illustrate possible mechanisms by which MAO activity affects cardiac biology and function, along with a discussion as to their role as a prominent source of reactive oxygen species. Finally, we will speculate on why MAO inhibition might have a therapeutic value for treating cardiac affections of ischemic and non-ischemic origin. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.


The FASEB Journal | 2003

Overexpression of the stress-protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia

Maurizio Vitadello; Daniele Penzo; Valeria Petronilli; Genny Michieli; Selena Gomirato; Roberta Menabò; Fabio Di Lisa; Luisa Gorza

Increase in free intracellular calcium [Ca 2+]i plays a crucial role in cardiomyocyte ischemic injury. Here we demonstrate that overexpression of the sarcoplasmic‐reticulum stress‐protein Grp94 reduces myocyte necrosis due to calcium overload or simulated ischemia. Selective three‐to eightfold Grp94 increase, with no change in Grp78 or calreticulin amount, was achieved by stable transfection of skeletal C2C12 and cardiac H9c2 muscle cells. After exposure to the calcium ionophore A23187, LDH release from five different Grp94‐overexpressing clones of either C2C12 and H9c2 origin was significantly lower than that of control ones and [Ca 2+]i increase was significantly delayed. The number of necrotic cells, evaluated by propidium iodide uptake, was reduced when cells from the Grp94‐overexpressing H9c2 clone were exposed to conditions simulating ischemia. Experiments performed in neonatal rat cardiomyocytes co‐transfected with grp94 and the green fluorescent protein (GFP) cDNAs validated the protective effect of Grp94 overexpression. A lower percentage of propidium‐iodide positive/GFP‐fluorescent myocytes co‐expressing exogenous Grp94, with respect to myocytes expressing GFP alone, was observed after exposure to either A23187 (6.6% vs. 14.0%, respectively) or simulated ischemia (8.5% vs. 17.7%, respectively). In conclusion, the selective increase in Grp94 protects cardiomyocytes from both ischemia and calcium overload counteracting [Ca 2+]i elevations.


Journal of Biological Chemistry | 2014

Regulation of the Mitochondrial Permeability Transition Pore by the Outer Membrane Does Not Involve the Peripheral Benzodiazepine Receptor (Translocator Protein of 18 kDa (TSPO))

Justina Šileikytė; Randall Sewell; Andrea Carpi; Roberta Menabò; Fabio Di Lisa; Fernanda Ricchelli; Paolo Bernardi; Michael Forte

Background: TSPO has been proposed to be a critical regulator of the permeability transition pore (PTP). Results: TSPO-null mitochondria and cardiac tissue show no difference from controls in pore function, response to ligands, or response to ischemia/reperfusion injury. Conclusion: Regulation of the PTP by the outer membrane must rely on unknown proteins. Significance: Our results call into question studies implicating TSPO in pathological processes through the PTP. Translocator protein of 18 kDa (TSPO) is a highly conserved, ubiquitous protein localized in the outer mitochondrial membrane, where it is thought to play a key role in the mitochondrial transport of cholesterol, a key step in the generation of steroid hormones. However, it was first characterized as the peripheral benzodiazepine receptor because it appears to be responsible for high affinity binding of a number of benzodiazepines to non-neuronal tissues. Ensuing studies have employed natural and synthetic ligands to assess the role of TSPO function in a number of natural and pathological circumstances. Largely through the use of these compounds and biochemical associations, TSPO has been proposed to play a role in the mitochondrial permeability transition pore (PTP), which has been associated with cell death in many human pathological conditions. Here, we critically assess the role of TSPO in the function of the PTP through the generation of mice in which the Tspo gene has been conditionally eliminated. Our results show that 1) TSPO plays no role in the regulation or structure of the PTP, 2) endogenous and synthetic ligands of TSPO do not regulate PTP activity through TSPO, 3) outer mitochondrial membrane regulation of PTP activity occurs though a mechanism that does not require TSPO, and 4) hearts lacking TSPO are as sensitive to ischemia-reperfusion injury as hearts from control mice. These results call into question a wide variety of studies implicating TSPO in a number of pathological processes through its actions on the PTP.


European Journal of Applied Physiology | 1990

Influence of L-carnitine administration on maximal physical exercise

L. Vecchiet; F. Di Lisa; G. Pieralisi; Patrizio Ripari; Roberta Menabò; Maria Adele Giamberardino; N. Siliprandi

SummaryThe effects of L-carnitine administration on maximal exercise capacity were studied in a double-blind, cross-over trial on ten moderately trained young men. A quantity of 2 g of L-carnitine or a placebo were administered orally in random order to these subjects 1 h before they began exercise on a cycle ergometer. Exercise intensity was increased by 50-W increments every 3 min until they became exhausted. After 72-h recovery, the same exercise regime was repeated but this time the subjects, who had previously received L-carnitine, were now given the placebo and vice versa. The results showed that at the maximal exercise intensity, treatment with L-carnitine significantly increased both maximal oxygen uptake, and power output. Moreover, at similar exercise intensities in the L-carnitine trial oxygen uptake, carbon dioxide production, pulmonary ventilation and plasma lactate were reduced. It is concluded that under these experimental conditions pretreatment with L-carnitine favoured aerobic processes resulting in a more efficient performance. Possible mechanisms producing this effect are discussed.


Pharmacological Reports | 2009

Mitochondria and vascular pathology.

Fabio Di Lisa; Nina Kaludercic; Andrea Carpi; Roberta Menabò; Marco Giorgio

Functional and structural changes in mitochondria are caused by the opening of the mitochondrial permeability transition pore (PTP) and by the mitochondrial generation of reactive oxygen species (ROS). These two processes are linked in a vicious cycle that has been extensively documented in ischemia/reperfusion injuries of the heart, and the same processes likely contribute to vascular pathology. For instance, the opening of the PTP causes cell death in isolated endothelial and vascular smooth muscle cells. Indeed, atherosclerosis is exacerbated when mitochondrial antioxidant defenses are hampered, but a decrease in mitochondrial ROS formation reduces atherogenesis. Determining the exact location of ROS generation in mitochondria is a relevant and still unanswered question. The respiratory chain is generally believed to be a main site of ROS formation. However, several other mitochondrial components likely contribute to ROS generation. Recent reports highlight the relevance of monoamine oxidases (MAO) and p66(Shc). For example, the absence of p66(Shc) in hypercholesterolemic mice has been reported to reduce the occurrence of foam cells and early atherogenic lesions. On the other hand, MAO inhibition has been shown to reduce oxidative stress in many cell types eliciting significant protection from myocardial ischemia. In conclusion, evidence will be presented to demonstrate that (i) mitochondria are major sites of ROS formation; (ii) an increase in mitochondrial ROS formation and/or a decrease in mitochondrial antioxidant defenses exacerbate atherosclerosis; and (iii) mitochondrial dysfunction is likely a relevant mechanism underlying several risk factors (i.e., diabetes, hyperlipidemia, hypertension) associated with atherosclerosis.

Collaboration


Dive into the Roberta Menabò's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Giorgio

European Institute of Oncology

View shared research outputs
Researchain Logo
Decentralizing Knowledge