Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Sanna is active.

Publication


Featured researches published by Roberta Sanna.


BioMed Research International | 2015

Monitoring the Modifications of the Vitreous Humor Metabolite Profile after Death: An Animal Model

Maria Francesca Rosa; Paola Scano; Antonio Noto; Matteo Nioi; Roberta Sanna; Francesco Paribello; Fabio De-Giorgio; Emanuela Locci; Ernesto D'Aloja

We applied a metabolomic approach to monitor the modifications occurring in goat vitreous humor (VH) metabolite composition at different times (0, 6, 12, 18, and 24 hours) after death. The 1H-NMR analysis of the VH samples was performed for the simultaneous determination of several metabolites (i.e., the metabolite profile) representative of the VH status at different times. Spectral data were analyzed by Principal Component Analysis (PCA) and by Orthogonal Projection to Latent Structures (OPLS) regression technique. PCA and OPLS suggested that different spectral regions were involved in time-related changes. The major time-related compositional changes, here detected, were the increase of lactate, hypoxanthine, alanine, total glutathione, choline/phosphocholine, creatine, and myo-inositol and the decrease of glucose and 3-hydroxybutyrate. We attempted a speculative interpretation of the biological mechanisms underlying these changes. These results show that multivariate statistical approach, based on 1H NMR metabolite profiling, is a powerful tool for detecting ongoing differences in VH composition and may be applied to investigate several physiological and pathological conditions.


Journal of Materials Chemistry | 2011

In situ production of high filler content graphene-based polymer nanocomposites by reactive processing

Valeria Alzari; Daniele Nuvoli; Roberta Sanna; Sergio Scognamillo; Massimo Piccinini; J. M. Kenny; Giulio Malucelli; Alberto Mariani

This work deals with the preparation of graphene dispersed in a monomer (tetraethylene glycol diacrylate) and the subsequent polymerization of the latter to the corresponding polymer nanocomposite, which is the first obtained so far by direct polymerization of the graphene-dispersing medium. The method used for its obtainment allows reaching the highest concentration of graphene reported until now in any medium (9.45 mg mL−1); besides, a certain amount of graphene nanoribbons is also well visible. Furthermore, this goal is achieved by directly sonicating graphite without any chemical manipulation, which generally results in a final material still containing a significant number of defects. Because of its obtainment in the monomer itself, no filtration of graphene is needed, thus avoiding the reaggregation process to graphite, which partially compromises any previous exfoliation process. The obtained graphene-based polymer nanocomposites, fully characterized by Raman and transmission electron microscopy, differential scanning calorimetry, thermogravimetry, and dynamic–mechanical thermal analysis, exhibit a very homogeneous distribution of the graphene sheets within the polymer matrix. In addition, the interactions between the polymer and nanofiller are very strong, as evidenced by a significant increase in the Tg values even in the presence of a very low graphene content, together with a strong increase in the mechanical features (flexural and storage moduli). Finally, the thermo-oxidative stability of the polymer matrix is not affected by the presence of graphene nanosheets.


American Mineralogist | 2009

Structural properties of biologically controlled hydrozincite: An HRTEM and NMR spectroscopic study

Giovanni Battista De Giudici; Francesca Podda; Roberta Sanna; Elodia Musu; Riccardo Tombolini; Carla Cannas; Anna Maria Giovanna Musinu; Mariano Casu

Abstract The microscopic properties of biomineral hydrozincite [Zn5(CO3)2(OH)6] from Naracauli Creek (SW Sardinia) were investigated by using X-ray diffraction (XRD), nuclear magnetic resonance spectroscopy (NMR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). Because the biomineral hydrozincite turned out to significantly deviate from the ideal structure of hydrozincite, synthetic and geologic hydrozincite samples were also investigated for comparison. SEM imaging shows that biomineral hydrozincite is made of small platelet-shaped crystallites having a 20-50 nm long side at the shortest and other sides measuring hundreds of nanometers long. These are interlaced to form sheaths several micrometers long. HRTEM analysis of the biomineral samples shows an imperfectly oriented aggregation of the nanocrystals that is discussed in terms of mesocrystals. Transmission electron microscopy (TEM) and XRD analysis indicate a progressive decrease in the size of the particles in the biomineral compared to the synthetic and geologic hydrozincite samples, with coherent diffraction domains in the biomineral hydrozincite that are smaller by 30-50% than in the other samples investigated in this study. 13C magic angle spinning (MAS) and cross polarization magic angle spinning (CPMAS) NMR spectra show more than one peak for all the investigated samples, despite the fact that carbon atoms have a unique crystallographic position in the hydrozincite structure. The additional peaks can reflect the presence of lattice defects typical of nanocrystals as indicated by the HRTEM images, where high concentration of lattice defects, such as grain boundaries and stacking modes, can be observed both in the biomineral and in the synthetic samples. Further additional peaks in the NMR spectra of biomineral samples are attributed to organic molecules, relicts of the biomineralization process, in agreement with the filaments observed in SEM images of biomineral samples


PLOS ONE | 2015

Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

Giorgia Manzo; Mariano Andrea Scorciapino; Parvesh Wadhwani; Jochen Bürck; Nicola Montaldo; Manuela Pintus; Roberta Sanna; Mariano Casu; Andrea Giuliani; Giovanna Pirri; Vincenzo Luca; Anne S. Ulrich; Andrea C. Rinaldi

SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands.


Nanoscale Research Letters | 2012

The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes

Daniele Nuvoli; Valeria Alzari; Roberta Sanna; Sergio Scognamillo; Massimo Piccinini; Laura Peponi; J. M. Kenny; Alberto Mariani

We report the formation and characterization of graphene dispersions in two organosilanes, 3-glycidoxypropyl trimethoxysilane (GPTMS) and phenyl triethoxysilane (PhTES) as new reactive solvents. The preparation method was mild and easy and does not produce any chemical modification. The dispersions, which exhibit the Tyndall effect, were characterized by TEM and Raman spectroscopy to confirm the presence of few-layer graphene. Concentrations as high as 0.66 and 8.00 mg/ml were found for PhTES and GPTMS, respectively. The latter is one of the highest values reported for a dispersion of graphene obtained by any method. This finding paves the way for the direct synthesis of polymer nanofiller-containing composites consisting of graphene and reactive silanes to be used in sol–gel synthesis, without any need for solvent removal, thus preventing graphene reaggregation to form graphite flakes.


Food Chemistry | 2014

Analysing the effects of frozen storage and processing on the metabolite profile of raw mullet roes using 1H NMR spectroscopy

Cristina Piras; Paola Scano; Emanuela Locci; Roberta Sanna; Flaminia Cesare Marincola

(1)H NMR spectroscopy was used to investigate changes in the low molecular weight metabolic profile of raw mullet (Mugil spp.) roes during frozen storage and upon processing. NMR data were analysed by Principal Component Analyses (PCA). In the model constructed using frozen roes, no statistical significant metabolic modifications were observed in the first six months of storage, while choline derivatives, dimethylamine, lactate, and most of the free amino acids were identified as changing with statistical significance (p<0.05) in response to frozen storage time of twelve months. The PCA model comparing the metabolic profiles of roes before and after processing showed that the major modifications occurring upon manufacturing were the increase of the choline derivative compounds, uracil, and free amino acids, and a large decrease of taurine, glucose, lactate, and creatine/phosphocreatine. All of the above mentioned modifications reflect the occurrence of chemical/biochemical reactions arising from degradation processes such as lipolysis and proteolysis.


ACS Applied Materials & Interfaces | 2014

Exfoliated Graphene into Highly Ordered Mesoporous Titania Films: Highly Performing Nanocomposites from Integrated Processing

Luca Malfatti; Paolo Falcaro; Alessandra Pinna; Barbara Lasio; Maria Francesca Casula; Danilo Loche; Andrea Falqui; Benedetta Marmiroli; Heinz Amenitsch; Roberta Sanna; Alberto Mariani; Plinio Innocenzi

To fully exploit the potential of self-assembly in a single step, we have designed an integrated process to obtain mesoporous graphene nanocomposite films. The synthesis allows incorporating graphene sheets with a small number of defects into highly ordered and transparent mesoporous titania films. The careful design of the porous matrix at the mesoscale ensures the highest diffusivity in the films. These exhibit an enhanced photocatalytic efficiency, while the high order of the mesoporosity is not affected by the insertion of the graphene sheets and is well-preserved after a controlled thermal treatment. In addition, we have proven that the nanocomposite films can be easily processed by deep X-ray lithography to produce functional arrays.


Biophysical Journal | 2013

Conformational Analysis of the Frog Skin Peptide, Plasticin-L1 and its Effects on the Production of Proinflammatory Cytokines by Macrophages

Andrea C. Rinaldi; Giorgia Manzo; Roberta Sanna; Mariano Casu; Jelena Pantic; Miodrag L. Lukic; J. Michael Conlon; Mariano Andrea Scorciapino

Plasticin-L1 (GLVNGLLSSVLGGGQGGGGLLGGIL) is a conformationally flexible glycine/leucine-rich peptide originally isolated from norepinephrine-stimulated skin secretions of the South-American Santa Fe frog Leptodactylus laticeps (Leptodactylidae). A nuclear magnetic resonance/molecular dynamics characterization of plasticin-L1 in the presence of dodecylphosphocholine (DPC) and DPC/sodium dodecylsulphate micelles as membrane-mimetic models showed that the peptide has affinity for both neutral and anionic membranes. The peptide adopts a stable helical conformation at the N-terminal region and a more disordered helix at the C-terminal region, separated by an unstructured loop wherein the highest number of glycines is localized. In both micelle environments, plasticin-L1 slowly inserts between the detergent head groups but always remains localized at the micelle/water interface. Plasticin-L1 lacks direct antimicrobial activity but stimulates cytokine production by macrophages. Incubation with plasticin-L1 (20 μg/mL) significantly (P < 0.05) increased the production of the proinflammatory cytokines IL-1β, IL-12, IL-23, and TNF-α from unstimulated peritoneal macrophages from both C57BL/6 and BALB/C mice. The peptide also increased IL-6 production by unstimulated (P < 0.01) and lipopolysaccharide-stimulated (P < 0.01) macrophages, whereas the effects on production of the anti-inflammatory cytokine IL-10 were not significant. These findings suggest that plasticin-L1 may play an immunomodulatory role in vivo by stimulating cytokine production from frog skin macrophages in response to microbial pathogens. This peptide may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.


European Journal of Medicinal Chemistry | 2011

Metronidazole prodrugs: synthesis, physicochemical properties, stability, and ex vivo release studies.

Carla Mura; Donatella Valenti; Costantino Floris; Roberta Sanna; Maria Antonietta De Luca; Anna Maria Fadda; Giuseppe Loy

The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole.


Pharmaceutical Development and Technology | 2013

Drug silica nanocomposite: preparation, characterization and skin permeation studies

Martina Pilloni; Guido Ennas; Mariano Casu; Anna Maria Fadda; Francesca Frongia; Francesca Marongiu; Roberta Sanna; Alessandra Scano; Donatella Valenti; Chiara Sinico

The aim of this work was to evaluate silica nanocomposites as topical drug delivery systems for the model drug, caffeine. Preparation, characterization, and skin permeation properties of caffeine-silica nanocomposites are described. Caffeine was loaded into the nanocomposites by grinding the drug with mesoporous silica in a ball mill up to 10 h and the efficiency of the process was studied by XRPD. Formulations were characterized by several methods that include FTIR, XRPD, SEM and TEM. The successful loading of caffeine was demonstrated by XRPD and FTIR. Morphology was studied by SEM that showed particle size reduction while TEM demonstrated formation of both core-shell and multilayered caffeine-silica structures. Solid-state NMR spectra excluded chemical interactions between caffeine and silica matrix, thus confirming that no solid state reactions occurred during the grinding process. Influence of drug inclusion in silica nanocomposite on the in vitro caffeine diffusion into and through the skin was investigated in comparison with a caffeine gel formulation (reference), using newborn pig skin and vertical Franz diffusion cells. Results from the in vitro skin permeation experiments showed that inclusion into the nanocomposite reduced and delayed caffeine permeation from the silica nanocomposite in comparison with the reference, independently from the amount of the tested formulation.

Collaboration


Dive into the Roberta Sanna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge