Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Schiavone is active.

Publication


Featured researches published by Roberta Schiavone.


Biology of Reproduction | 2004

Adenosine Triphosphate Concentration and β-d-Glucuronidase Activity as Indicators of Sea Bass Semen Quality

Loredana Zilli; Roberta Schiavone; V. Zonno; Carlo Storelli; Sebastiano Vilella

Abstract The most common parameters used to evaluate sperm quality are motility rate and duration and fertilization ability. In this study, chemical and biochemical parameters of sea bass (Dicentrarchus labrax) sperm were investigated to find an alternative method for evaluating sperm fertilization ability before and after cryopreservation. The biochemical and chemical analyses were performed with fresh and frozen-thawed sperm and seminal plasma. To cryopreserve sperm, 250-μl straws were used. Fertilization ability was evaluated by inseminating eggs (obtained from hormonally stimulated females) with fresh and cryopreserved sperm. The results revealed a linear relationship (P < 0.05) between semen fertilization capacity and some seminal plasma (β-d-glucuronidase activity, potassium concentration) and sperm (ATP concentration, aspartate aminotransferase activity) parameters. Variations in semen fertilization rate could be best described by two multiple regression models: one including the sperm parameters and another including the seminal plasma parameters. For practical application, the use of simple regression models is of value. Fertilization rate in both fresh and cryopreserved sperm was reliably predicted by determining the ATP concentration or the β-d-glucuronidase activity or both.


Biology of Reproduction | 2005

Effect of Cryopreservation on Sea Bass Sperm Proteins

Loredana Zilli; Roberta Schiavone; V. Zonno; Rocco Rossano; Carlo Storelli; Sebastiano Vilella

Abstract In the present study we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to verify whether the protein expression of sea bass sperm was affected by the cryopreservation procedure. The protein profiles differed between fresh and frozen-thawed semen as revealed by visual inspection and by image analysis software. We identified 163 spots in fresh sperm; among these, 13 were significantly decreased and 8 were absent in two-dimensional gel obtained with cryopreserved sperm. Five of these spots were analyzed with MALDI-TOF, but only three showed a significant match in the databases used in bio-informatics analysis (PeptIdent, Mascot, and MS-Fit). In particular, spot 5 showed homology with a novel protein of zebrafish (similar to SKB1 of human and mouse), spot 13 showed homology with amphibian G1/S-specific cyclin E2, and spot 20 showed homology with the hypothetical protein DKFZp566A1524 of Brachidanio rerio. The present work shows that the use of the cryopreservation procedure causes the degradation of sperm proteins and among these, two could be at least partially responsible for the observed decrease in sperm motility duration and the lower hatching rate of eggs fertilized with cryopreserved sperm.


Biology of Reproduction | 2008

Molecular Mechanisms Determining Sperm Motility Initiation in Two Sparids (Sparus aurata and Lithognathus mormyrus)

Loredana Zilli; Roberta Schiavone; Carlo Storelli; Sebastiano Vilella

Abstract Molecular mechanisms involved in sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus) have been studied. Our comparative study demonstrates that osmolality is the key signal in sperm motility activation in both species, whereas K+ and Ca2+ do not have any role. The straight-line velocity that resulted, however, was significantly different when measured in sperm activated with non-ionic and/or calcium-free solutions with respect to that measured in seawater-activated sperm. In both species, motility initiation depends on cAMP-dependent protein phosphorylation. The phosphorylation/dephosphorylation patterns that resulted in gilthead and striped sea bream were quite different. In gilthead sea bream, the phosphorylated proteins have molecular weights of 174, 147, 138, 70, and 9-15 kDa, whereas the dephosphorylated proteins have molecular weights of 76, 57, and 33 kDa. In striped sea bream, phosphorylation after sperm motility activation occurred on proteins of 174, 147, 103, 96, 61, 57, and 28 kDa, whereas only one protein of 70 kDa resulted from dephosphorylation. Matrix-assisted laser desorption ionization-time of flight analyses allowed identification of the following proteins: In gilthead sea bream, the 9-15 kDa proteins that were phosphorylated after motility activation include an A-kinase anchor protein (AKAP), an acetyl-coenzyme A synthetase, and a protein phosphatase inhibitor, and in striped sea bream, 103- and 61-kDa proteins that were phosphorylated after motility activation were identified as a phosphatase (myotubularin-related protein 1) and a kinase (DYRK3), respectively.


Biology of Reproduction | 2009

Evidence for the Involvement of Aquaporins in Sperm Motility Activation of the Teleost Gilthead Sea Bream (Sparus aurata)

Loredana Zilli; Roberta Schiavone; François Chauvigné; Joan Cerdà; Carlo Storelli; Sebastiano Vilella

The expression of aquaporins in the spermatozoa of the marine teleost gilthead sea bream (Sparus aurata) and their involvement in the motility activation process were investigated. Sperm motility was activated by a hyperosmotic shock, but it was completely inhibited by 10 μM HgCl2, such inhibition being partially recovered by beta-mercaptoethanol (ME). Conventional RT-PCR using primers specific for S. aurata aquaglyceroporin (glp) and aquaporin 1a (aqp1a) demonstrated the presence of both mRNAs in spermatozoa. Heterologous expression in Xenopus laevis oocytes showed that 10 and 100 μM HgCl2 equally inhibited water and solute transport through S. aurata aquaporin 1a and S. aurata aquaglyceroporin, but treatment with ME only recovered aquaporin 1a-mediated water permeability. Western blot analysis using isoform-specific antisera on protein extracts from spermatozoa revealed bands that corresponded to the predicted molecular mass of S. aurata aquaglyceroporin (31 kDa) and S. aurata aquaporin 1a (28 kDa). The antisera also demonstrated that both aquaporins were localized in the head and flagellum of the spermatozoa. However, the immunoreaction at the plasma membrane of the spermatozoa head was more intense after the hyperosmotic activation, suggesting the translocation of both aquaporin 1a and aquaglyceroporin into the plasma membrane after the osmotic shock. This study therefore provides the first direct demonstration for the presence of aquaporins in fish sperm. The different sensitivities of S. aurata aquaporin 1a and S. aurata aquaglyceroporin to ME may explain the failure of this reducing agent to fully recover the mercurial inhibition of sperm motility, suggesting that these aquaporins may play different physiological roles during the activation and maintenance of sperm motility in sea bream.


Biology of Reproduction | 2012

Improving Sperm Cryopreservation with Antifreeze Proteins: Effect on Gilthead Seabream (Sparus aurata) Plasma Membrane Lipids

J. Beirão; Loredana Zilli; Sebastiano Vilella; Elsa Cabrita; Roberta Schiavone; M.P. Herráez

ABSTRACT Changes in the plasma membrane lipid composition have been related to a decrease in sperm quality during cryopreservation. Antifreeze proteins (AFPs) have been tested in different species because of their ability to depress the freezing point and their potential interaction with membranes, but controversial effects were reported. In the present study we analyzed separately the lipid composition of two sperm membrane domains, head plasma membrane (HM) and flagellar membrane (FM), after cryopreservation with an extender containing 5% dimethyl sulfoxide (DMSO) either alone or with AFPI or AFPIII (1 μg/ml). We used sperm from a teleost, Sparus aurata, because the lack of acrosome avoids changes of lipid profiles due to capacitation process or acrosomal losses during freezing/thawing. Comparing with the control (cryopreservation with 5% DMSO alone), the addition of AFPIII increased the velocity, linearity of movement, and percentage of viable cells. In addition, freezing with DMSO alone increased the phosphatidyl-serine content as well as the saturated fatty acids and decreased the unsaturated ones (mainly polyunsaturated) both in HM and FM. These changes in the lipid components were highly avoided with the addition of AFPIII. HM had a higher amount of saturated fatty acids than FM and was more affected by cryopreservation without AFPs. The percentage of viable cells was positively correlated with the amount of unsaturated fatty acids in the HM, whereas the motility parameters were positively correlated with both FM and HM amount of unsaturated fatty acids. AFPs, especially AFPIII, seem to have interacted with unsaturated fatty acids, stabilizing the plasma membrane organization during cryopreservation and contributing to improve sperm quality after thawing.


Theriogenology | 2011

Aquaporin inhibition changes protein phosphorylation pattern following sperm motility activation in fish

Loredana Zilli; J. Beirão; Roberta Schiavone; M.P. Herráez; Elsa Cabrita; Carlo Storelli; Sebastiano Vilella

Our previous studies demonstrated that osmolality is the key signal in sperm motility activation in Sparus aurata spermatozoa. In particular, we have proposed that the hyper-osmotic shock triggers water efflux from spermatozoa via aquaporins. This water efflux determines the cell volume reduction and, in turn, the rise in the intracellular concentration of ions. This increase could lead to the activation of adenylyl cyclase and of the cAMP-signaling pathway, causing the phosphorylation of sperm proteins and then the initiation of sperm motility. This study confirms the important role of sea bream AQPs (Aqp1a and Aqp10b) in the beginning of sperm motility. In fact, when these proteins are inhibited by HgCl(2), the phosphorylation of some proteins (174 kDa protein of head; 147, 97 and 33 kDa proteins of flagella), following the hyper-osmotic shock, was inhibited (totally or partially). However, our results also suggest that more than one transduction pathways could be activated when sea bream spermatozoa were ejaculated in seawater, since numerous proteins showed an HgCl(2)(AQPs)-independent phosphorylation state after motility activation. The role played by each different signal transduction pathways need to be clarified.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2003

Changes in cell type composition and enzymatic activities in the hepatopancreas of Marsupenaeus japonicus during the moulting cycle.

Loredana Zilli; Roberta Schiavone; G. Scordella; V. Zonno; Tiziano Verri; Carlo Storelli; Sebastiano Vilella

The goal of the present study was to evaluate the changes in the cell type composition and ATPase activities (total ATPase, ouabain-sensitive Na+/K+-ATPase, furosemide-sensitive Na+-ATPase) that occur during the different stages of the moulting cycle in the hepatopancreas of the Marsupenaeus japonicus. The results clearly suggest that the number of resorptive and fibrillar cell types changes significantly during the different stages. An inverse correlation between resorptive and fibrillar cells is observed during moulting (both in normally fed and fasted animals). Fasting, but not the moulting cycle, affects the number of blister-like cells. In the resorptive cells the enzymatic activities (total ATPases and ouabain-sensitive Na+/K+-ATPase) also change during the moulting in a cyclical manner. All these results are in agreement with and confirm the different functions carried out by the two cell types within the hepatopancreas.


PLOS ONE | 2014

Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins.

Loredana Zilli; J. Beirão; Roberta Schiavone; M.P. Herráez; Antonio Gnoni; Sebastiano Vilella

Cryopreservation induces injuries to fish spermatozoa that in turn affect sperm quality in terms of fertilization ability, motility, DNA and protein integrity and larval survival. To reduce the loss of sperm quality due to freezing-thawing, it is necessary to improve these procedures. In the present study we investigated the ability of two antifreeze proteins (AFPI and AFPIII) to reduce the loss of quality of sea bream spermatozoa due to cryopreservation. To do so, we compared viability, motility, straight-line velocity and curvilinear velocity of fresh and (AFPs)-cryopreserved spermatozoa. AFPIII addition to cryopreservation medium improved viability, motility and straight-line velocity with respect to DMSO or DMSO plus AFPI. To clarify the molecular mechanism(s) underlying these findings, the protein profile of two different cryopreserved sperm domains, flagella and head plasma membranes, was analysed. The protein profiles differed between fresh and frozen-thawed semen and results of the image analysis demonstrated that, after cryopreservation, out of 270 proteins 12 were decreased and 7 were increased in isolated flagella, and out of 150 proteins 6 showed a significant decrease and 4 showed a significant increase in head membranes. Mass spectrometry analysis identified 6 proteins (4 from isolated flagella and 2 present both in flagella and head plasma membranes) within the protein spots affected by the freezing-thawing procedure. 3 out of 4 proteins from isolated flagella were involved in the sperm bioenergetic system. Our results indicate that the ability of AFPIII to protect sea bream sperm quality can be, at least in part, ascribed to reducing changes in the sperm protein profile occurring during the freezing-thawing procedure. Our results clearly demonstrated that AFPIII addition to cryopreservation medium improved the protection against freezing respect to DMSO or DMSO plus AFPI. In addition we propose specific proteins of spermatozoa as markers related to the procedures of fish sperm cryopreservation.


Cryobiology | 2008

Effect of cryopreservation on phosphorylation state of proteins involved in sperm motility initiation in sea bream.

Loredana Zilli; Roberta Schiavone; Carlo Storelli; Sebastiano Vilella

We have previously demonstrated that in sea bream Sparus aurata motility initiation determined changes in the phosphorylation state of some proteins. This paper describes an investigation of the effect of a freezing-thawing procedure on the protein phosphorylation/dephosphorylation pattern. Proteins extracted from fresh and cryopreserved spermatozoa (before and after motility activation) were separated on SDS-PAGE, blotted on nitrocellulose membrane and treated with anti-phosphotyrosine, anti-phosphothreonine, or anti-phosphoserine antibodies. The results obtained demonstrate that the cryopreservation protocol has a strong effect on the phosphorylation state of proteins. In general, compared to fresh sperm, phosphorylated proteins are most numerous in both activated and non-activated cryopreserved sperm, and in particular we observed a dramatic increase in threonine phosphorylation. However, frozen-thawed sperm showed a minor number of proteins that changed their phosphorylation state after motility activation. Among these, we identified the acetyl-coenzyme A synthetase that plays a role in sperm motility initiation in both fresh and cryopreserved sperm.


Theriogenology | 2012

Changes in hormonal profile, gonads and sperm quality of Argyrosomus regius (Pisces, Scianidae) during the first sexual differentiation and maturation.

Roberta Schiavone; Loredana Zilli; Carlo Storelli; Sebastiano Vilella

In the present study, sexual gonadal differentiation and first sexual maturation of Meagre (Argyrosomus regius) was studied, based upon the annual changes in gonadosomatic index (GSI), gonadal histology, and the plasma steroid hormones, testosterone (T), 11-ketotestosterone (11-KT), and estradiol (E2). In addition, spermatozoa characteristics were evaluated by measuring sperm motility and morphology. Results demonstrated that Meagre completes sex differentiation at 10 to 12 mo of age, and are group-synchronous spawners, which reach puberty at 2 (mean length 26.8 ± 0.7 cm, mean weight 920 ± 75 g; N = 10) and 3 (mean length 35.8 ± 0.8 cm, mean weight 1610 ± 89 g; N = 10) years of age for males and females, respectively. In males, during the sex differentiation period, T levels were significantly higher with respect to those of 11-KT; this suggests that T has a key role in the early phases of the sex differentiation. During the spawning season an increase in plasma concentrations of all hormones was observed with 11-KT levels being significantly higher that those of T. In females, during the sex differentiation period, there was an increase in E2 plasma levels, while during the first spawning season, a significant increase of T and E2 levels were measured. Regarding sperm characteristics, the measured curvilinear velocity (VCL) and straight-linear velocity (VSL), resulted in the same order of magnitude with respect to those measured in other marine fish, while the average path velocity (VAP) was similar to that measured in the European Eel. The head of Meagre spermatozoa presents as oval shaped with a surface area of approximately 3.66 μm(2) and a perimeter of approximately 6.65 μm. All these findings represent an important basis for further investigation on the reproductive biology of this specie and may assist the farmers to improve seed production in aquaculture.

Collaboration


Dive into the Roberta Schiavone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Zonno

University of Salento

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elsa Cabrita

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge