Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Zaninello is active.

Publication


Featured researches published by Roberta Zaninello.


Hypertension | 2012

Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase

Erika Salvi; Zoltán Kutalik; Nicola Glorioso; Paola Benaglio; Francesca Frau; Tatiana Kuznetsova; Hisatomi Arima; Clive J. Hoggart; Jean Tichet; Yury P. Nikitin; Costanza Conti; Jitka Seidlerová; Valérie Tikhonoff; Katarzyna Stolarz-Skrzypek; Toby Johnson; Nabila Devos; Laura Zagato; Simonetta Guarrera; Roberta Zaninello; Andrea Calabria; Benedetta Stancanelli; Chiara Troffa; Lutgarde Thijs; Federica Rizzi; Galina Simonova; Sara Lupoli; Giuseppe Argiolas; Daniele Braga; Maria C. D'Alessio; Maria Francesca Ortu

Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37–1.73]; combined P=2.58 · 10−13). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25–1.44; P=1.032 · 10−14). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16–3.66) for systolic and 1.40 (95% CI: 0.25–2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.


Journal of the American Heart Association | 2015

Pharmacogenomics of Hypertension: A Genome‐Wide, Placebo‐Controlled Cross‐Over Study, Using Four Classes of Antihypertensive Drugs

Timo P. Hiltunen; Kati Donner; Antti Pekka Sarin; Janna Saarela; Samuli Ripatti; Arlene B. Chapman; John G. Gums; Yan Gong; Rhonda M. Cooper-DeHoff; Francesca Frau; Valeria Glorioso; Roberta Zaninello; Erika Salvi; Nicola Glorioso; Eric Boerwinkle; Stephen T. Turner; Julie A. Johnson; Kimmo Kontula

Background Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment. Methods and Results We conducted a genome‐wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double‐blind, placebo‐controlled cross‐over study where each subject received amlodipine, bisoprolol, hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single‐nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome‐wide significance (P<5×10−8); however, this could not be replicated in the PEAR Study using atenolol. In addition, 39 single‐nucleotide polymorphisms showed P values of 10−5 to 10−7. The 20 top‐associated single‐nucleotide polymorphisms were different for each antihypertensive drug. None of these top single‐nucleotide polymorphisms co‐localized with the panel of >40 genes identified in genome‐wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes. Conclusions These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase–mediated reactions in antihypertensive drug action.


Pharmacogenomics | 2010

Haplotypes of the adrenergic system predict the blood pressure response to β-blockers in women with essential hypertension

Fabiana Filigheddu; Giuseppe Argiolas; Simona Degortes; Roberta Zaninello; Francesca Frau; Silvia Pitzoi; Emanuela Bulla; Patrizia Bulla; Chiara Troffa; Nicola Glorioso

AIMS To analyze the association of haplotypes of the adrenergic system with essential hypertension and with the blood pressure response to beta-blockers. MATERIALS & METHODS In 1112 never-treated essential hypertension patients and 203 normotensive controls, tightly linked SNPs of beta-adrenergic receptors (ADRB1 - Ser49Gly and Arg389Gly; ADRB2 - Cys19Arg, Gly16Arg and Gln27Glu) and the G-protein beta3-subunit (GNB3 - A3882C, G5249A and C825T) were genotyped. Association of haplotypes with essential hypertension and with the blood pressure response to atenolol 50 mg twice daily in a subgroup of essential hypertension patients (n = 340) was evaluated (Haploview 3.2). RESULTS No SNPs or haplotypes were associated with essential hypertension. In females only, GNB3 SNPs and haplotypes were associated with the blood pressure response (p < 0.05). CONCLUSION Our study confirmed the sex-specific association of GNB3 with the blood pressure response to atenolol with no substantial advantage of the analysis of haplotypes over SNPs.


Pharmacogenomics | 2008

Clinical variables, not RAAS polymorphisms, predict blood pressure response to ACE inhibitors in Sardinians

Fabiana Filigheddu; Giuseppe Argiolas; Emanuela Bulla; Chiara Troffa; Patrizia Bulla; Simone Fadda; Roberta Zaninello; Simona Degortes; Francesca Frau; Silvia Pitzoi; Nicola Glorioso

AIM No definite factors predict blood pressure response to angiotensin-converting enzyme-inhibitors. The aim of this study was to test the association of gene polymorphisms of the renin-angiotensin-aldosterone system with essential hypertension and anthropometric variables, intermediate phenotypes and gene polymorphisms with blood pressure after fosinopril in a genetically homogeneous cohort. METHODS A total of 630 essential hypertension patients, not previously treated or out of antihypertensive treatment for at least 6 months versus 219 normotensives (genotype frequencies, chi(2)). A total of 191 patients were randomly assigned to fosinopril 20 mg/day. Samples for plasma renin activity and aldosterone, 24-h urinary sodium (flame photometry) were collected. Gene polymorphisms--angiotensin-converting enzyme (insertion/deletion), angiotensin II type 1-receptor (A1166C), aldosterone synthase (-344C/T) and angiotensinogen (-6A/G)--were analyzed by standard techniques. The association of anthropometric variables, intermediate phenotypes and gene polymorphisms with blood pressure after 4 weeks therapy was tested by univariate analysis and analysis of covariance model (Intercooled Stata SE 9.2). RESULTS No genetic polymorphisms were associated with essential hypertension, blood pressure response and intermediate phenotypes (p > 0.05). Systolic blood pressure after therapy was associated with baseline systolic blood pressure, age and sex. CONCLUSIONS Our results confirm the difficulty in dissecting both essential hypertension and pharmacogenomics when analyzing the effect of single genes in complex multifactorial traits.


PLOS ONE | 2014

Sardinians genetic background explained by runs of homozygosity and genomic regions under positive selection

Cornelia Di Gaetano; Giovanni Fiorito; Maria Francesca Ortu; Fabio Rosa; Simonetta Guarrera; Barbara Pardini; Daniele Cusi; Francesca Frau; Cristina Barlassina; Chiara Troffa; Giuseppe Argiolas; Roberta Zaninello; Giovanni Fresu; Nicola Glorioso; Alberto Piazza; Giuseppe Matullo

The peculiar position of Sardinia in the Mediterranean sea has rendered its population an interesting biogeographical isolate. The aim of this study was to investigate the genetic population structure, as well as to estimate Runs of Homozygosity and regions under positive selection, using about 1.2 million single nucleotide polymorphisms genotyped in 1077 Sardinian individuals. Using four different methods - fixation index, inflation factor, principal component analysis and ancestry estimation - we were able to highlight, as expected for a genetic isolate, the high internal homogeneity of the island. Sardinians showed a higher percentage of genome covered by RoHs>0.5 Mb (FRoH%0.5) when compared to peninsular Italians, with the only exception of the area surrounding Alghero. We furthermore identified 9 genomic regions showing signs of positive selection and, we re-captured many previously inferred signals. Other regions harbor novel candidate genes for positive selection, like TMEM252, or regions containing long non coding RNA. With the present study we confirmed the high genetic homogeneity of Sardinia that may be explained by the shared ancestry combined with the action of evolutionary forces.


Atherosclerosis | 2009

Prevalence and clinical features of heterozygous carriers of autosomal recessive hypercholesterolemia in Sardinia

Fabiana Filigheddu; Fabiana Quagliarini; Filomena Campagna; Tanuccia Secci; Simona Degortes; Roberta Zaninello; Giuseppe Argiolas; Roberto Verna; Silvia Pitzoi; Francesca Frau; Chiara Troffa; Emanuela Bulla; Stefano Bertolini; Nicola Glorioso; Marcello Arca

OBJECTIVE Autosomal recessive hypercholesterolemia (ARH) is a lipid disorder caused by mutations in a specific adaptor protein for the LDL receptor. ARH is rare except in Sardinia where three alleles (ARH1, ARH2 and ARH3) explain most of cases. The prevalence of ARH heterozygotes in Sardinia is not well determined as well as inconclusive data are available on the effect of the ARH carrier status on LDL cholesterol (LDL-C) and coronary risk. METHODS 3410 Sardinians (986 blood donors, 1709 with hypertension and 715 with myocardial infarction (MI)) were screened for ARH alleles. For comparison purposes, lipid data of 60 ARH heterozygous carriers and 60 non-carriers identified within 24 ARH families were also considered. RESULTS In the whole study cohort, no ARH homozygotes were found, but 15 ARH1 (0.44%) and 9 ARH2 (0.26%) heterozygous carriers were identified. The frequency of ARH alleles in blood donors was 0.0030, not different from that in hypertensive subjects (0.0032). ARH alleles tended to be more common in MI patients (0.0049), but no association between ARH carrier status and MI risk was detected after controlling for conventional risk factors. ARH carriers and non-carriers showed similar LDL-C levels. This result was confirmed when ARH carriers and non-carriers identified throughout family-based and population-based screenings were combined and compared (141.0+/-41 mg/dl vs. 137.0+/-41 mg/dl, respectively; p=0.19). CONCLUSIONS These data indicate that the frequency of ARH heterozygotes in Sardinia is approximately 1:143 individuals, thus making this condition one of the most common in the Sardinian population. However, ARH carrier status does not influence LDL-C concentration and coronary risk, thus suggesting that ARH can be regarded as a truly recessive disorder.


Hypertension | 2017

Genome-Wide and Gene-Based Meta-Analyses Identify Novel Loci Influencing Blood Pressure Response to Hydrochlorothiazide

Erika Salvi; Zhiying Wang; Federica Rizzi; Yan Gong; Caitrin W. McDonough; Sandosh Padmanabhan; Timo P. Hiltunen; Chiara Lanzani; Roberta Zaninello; Martina Chittani; Kent R. Bailey; Antti Pekka Sarin; Matteo Barcella; Olle Melander; Arlene B. Chapman; Paolo Manunta; Kimmo K. Kontula; Nicola Glorioso; Daniele Cusi; Anna F. Dominiczak; Julie A. Johnson; Cristina Barlassina; Eric Boerwinkle; Rhonda M. Cooper-DeHoff; Stephen T. Turner

This study aimed to identify novel loci influencing the antihypertensive response to hydrochlorothiazide monotherapy. A genome-wide meta-analysis of blood pressure (BP) response to hydrochlorothiazide was performed in 1739 white hypertensives from 6 clinical trials within the International Consortium for Antihypertensive Pharmacogenomics Studies, making it the largest study to date of its kind. No signals reached genome-wide significance (P<5×10−8), and the suggestive regions (P<10−5) were cross-validated in 2 black cohorts treated with hydrochlorothiazide. In addition, a gene-based analysis was performed on candidate genes with previous evidence of involvement in diuretic response, in BP regulation, or in hypertension susceptibility. Using the genome-wide meta-analysis approach, with validation in blacks, we identified 2 suggestive regulatory regions linked to gap junction protein &agr;1 gene (GJA1) and forkhead box A1 gene (FOXA1), relevant for cardiovascular and kidney function. With the gene-based approach, we identified hydroxy-delta-5-steroid dehydrogenase, 3 &bgr;- and steroid &dgr;-isomerase 1 gene (HSD3B1) as significantly associated with BP response (P<2.28×10−4). HSD3B1 encodes the 3&bgr;-hydroxysteroid dehydrogenase enzyme and plays a crucial role in the biosynthesis of aldosterone and endogenous ouabain. By amassing all of the available pharmacogenomic studies of BP response to hydrochlorothiazide, and using 2 different analytic approaches, we identified 3 novel loci influencing BP response to hydrochlorothiazide. The gene-based analysis, never before applied to pharmacogenomics of antihypertensive drugs to our knowledge, provided a powerful strategy to identify a locus of interest, which was not identified in the genome-wide meta-analysis because of high allelic heterogeneity. These data pave the way for future investigations on new pathways and drug targets to enhance the current understanding of personalized antihypertensive treatment.


Pharmacogenomics | 2014

Genome-wide association study identifies CAMKID variants involved in blood pressure response to losartan: the SOPHIA study

Francesca Frau; Roberta Zaninello; Erika Salvi; Maria Francesca Ortu; Daniele Braga; Dinesh Velayutham; Giuseppe Argiolas; Giovanni Fresu; Chiara Troffa; Emanuela Bulla; Patrizia Bulla; Silvia Pitzoi; Daniela Antonella Piras; Valeria Glorioso; Martina Chittani; Giampaolo Bernini; Michele Bardini; Francesco Fallo; Lorenzo Malatino; Benedetta Stancanelli; Giuseppe Regolisti; Claudio Ferri; G. Desideri; Giuseppe Antonio Scioli; Ferruccio Galletti; Angela Sciacqua; Francesco Perticone; Ezio Degli Esposti; Alessandra Sturani; Andrea Semplicini

BACKGROUND Essential hypertension arises from the combined effect of genetic and environmental factors. A pharmacogenomics approach could help to identify additional molecular mechanisms involved in its pathogenesis. AIM The aim of SOPHIA study was to identify genetic polymorphisms regulating blood pressure response to the angiotensin II receptor blocker, losartan, with a whole-genome approach. MATERIALS & METHODS We performed a genome-wide association study on blood pressure response in 372 hypertensives treated with losartan and we looked for replication in two independent samples. RESULTS We identified a peak of association in CAMK1D gene (rs10752271, effect size -5.5 ± 0.94 mmHg, p = 1.2 × 10(-8)). CAMK1D encodes a protein that belongs to the regulatory pathway involved in aldosterone synthesis. We tested the specificity of rs10752271 for losartan in hypertensives treated with hydrochlorothiazide and we validated it in silico in the GENRES cohort. CONCLUSION Using a genome-wide approach, we identified the CAMK1D gene as a novel locus associated with blood pressure response to losartan. CAMK1D gene characterization may represent a useful tool to personalize the treatment of essential hypertension.


Journal of Hypertension | 2015

TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives

Martina Chittani; Roberta Zaninello; Chiara Lanzani; Francesca Frau; Maria Francesca Ortu; Erika Salvi; Giovanni Fresu; Lorena Citterio; Daniele Braga; Daniela Antonella Piras; Simona Delli Carpini; Dinesh Velayutham; Marco Simonini; Giuseppe Argiolas; S. Pozzoli; Chiara Troffa; Valeria Glorioso; Kimmo Kontula; Timo P. Hiltunen; Kati Donner; Stephen T. Turner; Eric Boerwinkle; Arlene B. Chapman; Sandosh Padmanabhan; Anna F. Dominiczak; Olle Melander; Julie A. Johnson; Rhonda M. Cooper-DeHoff; Yan Gong; Natalia V. Rivera

Background: Thiazide diuretics have been recommended as a first-line antihypertensive treatment, although the choice of ‘the right drug in the individual essential hypertensive patient’ remains still empirical. Essential hypertension is a complex, polygenic disease derived from the interaction of patients genetic background with the environment. Pharmacogenomics could be a useful tool to pinpoint gene variants involved in antihypertensive drug response, thus optimizing therapeutic advantages and minimizing side effects. Methods and results: We looked for variants associated with blood pressure response to hydrochlorothiazide over an 8-week follow-up by means of a genome-wide association analysis in two Italian cohorts of never-treated essential hypertensive patients: 343 samples from Sardinia and 142 from Milan. TET2 and CSMD1 as plausible candidate genes to affect SBP response to hydrochlorothiazide were identified. The specificity of our findings for hydrochlorothiazide was confirmed in an independent cohort of essential hypertensive patients treated with losartan. Our best findings were also tested for replication in four independent hypertensive samples of European Ancestry, such as GENetics of drug RESponsiveness in essential hypertension, Genetic Epidemiology of Responses to Antihypertensives, NORdic DILtiazem intervention, Pharmacogenomics Evaluation of Antihypertensive Responses, and Campania Salute Network-StayOnDiur. We validated a polymorphism in CSMD1 and UGGT2. Conclusion: This exploratory study reports two plausible loci associated with SBP response to hydrochlorothiazide: TET2, an aldosterone-responsive mediator of &agr;ENaC gene transcription; and CSMD1, previously described as associated with hypertension in a case–control study.


PLOS ONE | 2013

Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population.

Nicola Glorioso; Victoria L. M. Herrera; Tamara Didishvili; Maria Francesca Ortu; Roberta Zaninello; Giovanni Fresu; Giuseppe Argiolas; Chiara Troffa; Nelson Ruiz-Opazo

Coronary artery disease, heart failure, fatal arrhythmias, stroke, and renal disease are the most common causes of mortality for humans, and essential hypertension remains a major risk factor. Elucidation of susceptibility loci for essential hypertension has been difficult because of its complex, multifactorial nature involving genetic, environmental, and sex- and age-dependent nature. We investigated whether the 11p15.5 region syntenic to rat chromosome 1 region containing multiple blood pressure quantitative trait loci (QTL) detected in Dahl rat intercrosses harbors polymorphisms that contribute to susceptibility/resistance to essential hypertension in a Sardinian population. Initial testing performed using microsatellite markers spanning 18 Mb of 11p15.5 detected a strong association between D11S1318 (at 2.1 Mb, P = 0.004) and D11S1346 (at 10.6 Mb, P = 0.00000004), suggesting that loci in close proximity to these markers may contribute to susceptibility in our Sardinian cohort. NLR family, pyrin domain containing 6/angiotensin-vasopressin receptor (NLRP6/AVR), and adrenomedullin (ADM) are in close proximity to D11S1318 and D11S1346, respectively; thus we tested single nucleotide polymorphisms (SNPs) within NLRP6/AVR and ADM for their association with hypertension in our Sardinian cohort. Upon sex stratification, we detected one NLRP6/AVR SNP associated with decreased susceptibility to hypertension in males (rs7948797G, P = 0.029; OR = 0.73 [0.57–0.94]). For ADM, sex-specific analysis showed a significant association between rs4444073C, with increased susceptibility to essential hypertension only in the male population (P = 0.006; OR = 1.44 [1.13–1.84]). Our results revealed an association between NLRP6/AVR and ADM loci with male essential hypertension, suggesting the existence of sex-specific NLRP6/AVR and ADM variants affecting male susceptibility to essential hypertension.

Collaboration


Dive into the Roberta Zaninello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge