Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Adachi is active.

Publication


Featured researches published by Roberto Adachi.


Nature | 2007

A dual-Ca2+-sensor model for neurotransmitter release in a central synapse

Jianyuan Sun; Zhiping P. Pang; Dengkui Qin; Abigail T. Fahim; Roberto Adachi; Thomas C. Südhof

Ca2+-triggered synchronous neurotransmitter release is well described, but asynchronous release—in fact, its very existence—remains enigmatic. Here we report a quantitative description of asynchronous neurotransmitter release in calyx-of-Held synapses. We show that deletion of synaptotagmin 2 (Syt2) in mice selectively abolishes synchronous release, allowing us to study pure asynchronous release in isolation. Using photolysis experiments of caged Ca2+, we demonstrate that asynchronous release displays a Ca2+ cooperativity of ∼2 with a Ca2+ affinity of ∼44 μM, in contrast to synchronous release, which exhibits a Ca2+ cooperativity of ∼5 with a Ca2+ affinity of ∼38 μM. Our results reveal that release triggered in wild-type synapses at low Ca2+ concentrations is physiologically asynchronous, and that asynchronous release completely empties the readily releasable pool of vesicles during sustained elevations of Ca2+. We propose a dual-Ca2+-sensor model of release that quantitatively describes the contributions of synchronous and asynchronous release under conditions of different presynaptic Ca2+ dynamics.


Nature | 2014

Muc5b is required for airway defence

Michelle G. Roy; Alessandra Livraghi-Butrico; Ashley A. Fletcher; Melissa M. McElwee; Scott E. Evans; Ryan M. Boerner; Samantha N. Alexander; Lindsey K. Bellinghausen; Alfred S. Song; Youlia Petrova; Michael J. Tuvim; Roberto Adachi; Irlanda Romo; Andrea S. Bordt; M. Gabriela Bowden; Joseph H. Sisson; Prescott G. Woodruff; David J. Thornton; Karine Rousseau; Maria Miguelina De La Garza; Seyed Javad Moghaddam; Harry Karmouty-Quintana; Michael R. Blackburn; Scott M. Drouin; C. William Davis; Kristy A. Terrell; Barbara R. Grubb; Wanda K. O'Neal; Sonia C. Flores; Adela Cota-Gomez

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b−/− mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Nature Neuroscience | 2009

Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal

Xin Sheng Wu; Benjamin D. McNeil; Jianhua Xu; Junmei Fan; Lei Xue; Ernestina Melicoff; Roberto Adachi; Li Bai; Ling Gang Wu

Although endocytosis maintains synaptic transmission, how endocytosis is initiated is unclear. We found that calcium influx initiated all forms of endocytosis at a single nerve terminal in rodents, including clathrin-dependent slow endocytosis, bulk endocytosis, rapid endocytosis and endocytosis overshoot (excess endocytosis), with each being evoked with a correspondingly higher calcium threshold. As calcium influx increased, endocytosis gradually switched from very slow endocytosis to slow endocytosis to bulk endocytosis to rapid endocytosis and to endocytosis overshoot. The calcium-induced endocytosis rate increase was a result of the speeding up of membrane invagination and fission. Pharmacological experiments suggested that the calcium sensor mediating these forms of endocytosis is calmodulin. In addition to its role in recycling vesicles, calcium/calmodulin-initiated endocytosis facilitated vesicle mobilization to the readily releasable pool, probably by clearing fused vesicle membrane at release sites. Our findings provide a unifying mechanism for the initiation of various forms of endocytosis that are critical in maintaining exocytosis.


Journal of Biological Chemistry | 2007

The Mast Cell-restricted Tryptase mMCP-6 Has a Critical Immunoprotective Role in Bacterial Infections

Shakeel M. Thakurdas; Ernestina Melicoff; Leticia Sansores-Garcia; Daniel C. Moreira; Youlia Petrova; Richard L. Stevens; Roberto Adachi

Although it has been shown that mast cell-deficient mice have diminished innate immune responses against bacteria, the most important immunoprotective factors secreted from activated mast cells have not been identified. Mouse mast cell protease 6 is a tetramer-forming tryptase. This serine protease is abundant in the secretory granules and is exocytosed upon bacterial challenge. Here we have described the generation of a mast cell protease-6-null mouse. Our discovery that mice lacking this neutral protease cannot efficiently clear Klebsiella pneumoniae from their peritoneal cavities reveals an essential role for this serine protease, and presumably its human ortholog, in innate immunity.


Journal of Immunology | 2009

Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes.

Kichul Shin; Peter Nigrovic; James F. Crish; Eric Boilard; H. Patrick McNeil; Katherine Larabee; Roberto Adachi; Michael F. Gurish; Reuben Gobezie; Richard L. Stevens; David M. Lee

Although mast cells (MCs) often are abundant in the synovial tissues of patients with rheumatoid arthritis, the contribution of MCs to joint inflammation and cartilage loss remains poorly understood. MC-restricted tryptase/heparin complexes have proinflammatory activity, and significant amounts of human tryptase β (hTryptase-β) are present in rheumatoid arthritis synovial fluid. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and this serine protease is abundant in the synovium of arthritic mice. We now report that C57BL/6 (B6) mice lacking their tryptase/heparin complexes have attenuated arthritic responses, with mMCP-6 as the dominant tryptase responsible for augmenting neutrophil infiltration in the K/BxN mouse serum-transfer arthritis model. While inflammation in this experimental arthritis model was not dependent on protease-activated receptor-2, it was dependent on the chemokine receptor CXCR2. In support of the latter data, exposure of synovial fibroblasts to hTryptase-β/heparin or mMCP-6/heparin complexes resulted in expression of the neutrophil chemotactic factors CXCL1/KC, CXCL5/LIX, and CXCL8/IL-8. Our proteomics, histochemistry, and immunohistochemistry data also revealed substantial loss of cartilage-derived aggrecan proteoglycans in the arthritic joints of wild-type B6 mice but not mMCP-6-null B6 mice. These observations demonstrate the functional contribution of MC-restricted tryptase/heparin complexes in the K/BxN mouse arthritis model and connect our mouse findings with rheumatoid arthritis pathophysiology.


The Journal of Neuroscience | 2006

Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses.

Zhiping P. Pang; Ernestina Melicoff; Daniel Padgett; Yun Liu; Andrew Franklin Teich; Burton F. Dickey; Weichun Lin; Roberto Adachi; Thomas C. Südhof

Biochemical and genetic data suggest that synaptotagmin-2 functions as a Ca2+ sensor for fast neurotransmitter release in caudal brain regions, but animals and/or synapses lacking synaptotagmin-2 have not been examined. We have now generated mice in which the 5′ end of the synaptotagmin-2 gene was replaced by lacZ. Using β-galactosidase as a marker, we show that, consistent with previous studies, synaptotagmin-2 is widely expressed in spinal cord, brainstem, and cerebellum, but is additionally present in selected forebrain neurons, including most striatal neurons and some hypothalamic, cortical, and hippocampal neurons. Synaptotagmin-2-deficient mice were indistinguishable from wild-type littermates at birth, but subsequently developed severe motor dysfunction, and perished at ∼3 weeks of age. Electrophysiological studies in cultured striatal neurons revealed that the synaptotagmin-2 deletion slowed the kinetics of evoked neurotransmitter release without altering the total amount of release. In contrast, synaptotagmin-2-deficient neuromuscular junctions (NMJs) suffered from a large reduction in evoked release and changes in short-term synaptic plasticity. Furthermore, in mutant NMJs, the frequency of spontaneous miniature release events was increased both at rest and during stimulus trains. Viewed together, our results demonstrate that the synaptotagmin-2 deficiency causes a lethal impairment in synaptic transmission in selected synapses. This impairment, however, is less severe than that produced in forebrain neurons by deletion of synaptotagmin-1, presumably because at least in NMJs, synaptotagmin-1 is coexpressed with synaptotagmin-2, and both together mediate fast Ca2+-triggered release. Thus, synaptotagmin-2 is an essential synaptotagmin isoform that functions in concert with other synaptotagmins in the Ca2+ triggering of neurotransmitter release.


Immunological Reviews | 2007

Protease–proteoglycan complexes of mouse and human mast cells and importance of their β‐tryptase–heparin complexes in inflammation and innate immunity

Richard L. Stevens; Roberto Adachi

Summary:  Approximately 50% of the weight of a mature mast cell (MC) consists of varied neutral proteases stored in the cell’s secretory granules ionically bound to serglycin proteoglycans that contain heparin and/or chondroitin sulfate E/diB chains. Mouse MCs express the exopeptidase carboxypeptidase A3 and at least 15 serine proteases [designated as mouse MC protease (mMCP) 1–11, transmembrane tryptase/tryptase γ/protease serine member S (Prss) 31, cathepsin G, granzyme B, and neuropsin/Prss19]. mMCP‐6, mMCP‐7, mMCP‐11/Prss34, and Prss31 are the four members of the chromosome 17A3.3 family of tryptases that are preferentially expressed in MCs. One of the challenges ahead is to understand why MCs express so many different protease–proteoglycan macromolecular complexes. MC‐like cells that contain tryptase–heparin complexes in their secretory granules have been identified in the Ciona intestinalis and Styela plicata urochordates that appeared approximately 500 million years ago. Because sea squirts lack B cells and T cells, it is likely that MCs and their tryptase–proteoglycan granule mediators initially appeared in lower organisms as part of their innate immune system. The conservation of MCs throughout evolution suggests that some of these protease–proteoglycan complexes are essential to our survival. In support of this conclusion, no human has been identified that lacks MCs. Moreover, transgenic mice lacking the β‐tryptase mMCP‐6 are unable to combat a Klebsiella pneumoniae infection effectively. Here we summarize the nature and function of some of the tryptase–serglycin proteoglycan complexes found in mouse and human MCs.


The Journal of Allergy and Clinical Immunology | 2013

A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis.

Emma L. Beckett; Richard L. Stevens; Andrew G. Jarnicki; Richard Y. Kim; Irwan Hanish; Nicole G. Hansbro; Andrew Deane; Simon Keely; Jay C. Horvat; Ming Yang; Brian Oliver; Nico van Rooijen; Mark D. Inman; Roberto Adachi; Roy J. Soberman; Sahar Hamadi; Peter Wark; Paul S. Foster; Philip M. Hansbro

BACKGROUND Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.


Nature | 2009

Compound vesicle fusion increases quantal size and potentiates synaptic transmission

Liming He; Lei Xue; Jianhua Xu; Benjamin D. McNeil; Li Bai; Ernestina Melicoff; Roberto Adachi; Ling Gang Wu

Exocytosis at synapses generally refers to fusion between vesicles and the plasma membrane1. Although compound fusion between vesicles2,3 was proposed at ribbon-type synapses4,5, whether it exists, how it is mediated, and what role it plays at conventional synapses remain unclear. Here we addressed this issue at a nerve terminal containing conventional active zones. High potassium application and high frequency firing induced giant capacitance up-steps reflecting exocytosis of vesicles larger than regular ones, followed by giant down-steps reflecting bulk endocytosis. They also induced giant vesicle-like structures, as observed with electron microscopy, and giant miniature EPSCs (mEPSCs) reflecting more transmitter release. Calcium and its sensor for vesicle fusion, synaptotagmin, were required for these giant events. After high frequency firing, calcium/synaptotagmin-dependent mEPSC size increase was paralleled by calcium/synaptotagmin-dependent post-tetanic potentiation (PTP). These results suggest that calcium/synaptotagmin mediates compound fusion between vesicles, that exocytosis of compound vesicles increases quantal size which enhances synaptic strength and thus contributes to the generation of PTP, and that exocytosed compound vesicles may be retrieved via bulk endocytosis. We suggest to include a new vesicle cycling route, compound exocytosis followed by bulk endocytosis, into models of synapses, where currently only vesicle fusion with the plasma membrane is considered (Fig. S1)1.Exocytosis at synapses involves fusion between vesicles and the plasma membrane. Although compound fusion between vesicles was proposed to occur at ribbon-type synapses, whether it exists, how it is mediated, and what role it plays at conventional synapses remain unclear. Here we report the existence of compound fusion, its underlying mechanism, and its role at a nerve terminal containing conventional active zones in rats and mice. We found that high potassium application and high frequency firing induced giant capacitance up-steps, reflecting exocytosis of vesicles larger than regular ones, followed by giant down-steps, reflecting bulk endocytosis. These intense stimuli also induced giant vesicle-like structures, as observed with electron microscopy, and giant miniature excitatory postsynaptic currents (mEPSCs), reflecting more transmitter release. Calcium and its sensor for vesicle fusion, synaptotagmin, were required for these giant events. After high frequency firing, calcium/synaptotagmin-dependent mEPSC size increase was paralleled by calcium/synaptotagmin-dependent post-tetanic potentiation. These results suggest a new route of exocytosis and endocytosis composed of three steps. First, calcium/synaptotagmin mediates compound fusion between vesicles. Second, exocytosis of compound vesicles increases quantal size, which increases synaptic strength and contributes to the generation of post-tetanic potentiation. Third, exocytosed compound vesicles are retrieved via bulk endocytosis. We suggest that this vesicle cycling route be included in models of synapses in which only vesicle fusion with the plasma membrane is considered.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Essential role for mast cell tryptase in acute experimental colitis

Matthew J. Hamilton; Mark J. Sinnamon; Gregory D. Lyng; Jonathan N. Glickman; Xueli Wang; Wei Xing; Steven A. Krilis; Richard S. Blumberg; Roberto Adachi; David M. Lee; Richard L. Stevens

Patients with inflammatory bowel disease (IBD) have increased numbers of human tryptase-β (hTryptase-β)-positive mast cells (MCs) in the gastrointestinal tract. The amino acid sequence of mouse mast cell protease (mMCP)-6 is most similar to that of hTryptase-β. We therefore hypothesized that this mMCP, or the related tryptase mMCP-7, might have a prominent proinflammatory role in experimental colitis. The dextran sodium sulfate (DSS) and trinitrobenzene sulfonic acid (TNBS) colitis models were used to evaluate the differences between C57BL/6 (B6) mouse lines that differ in their expression of mMCP-6 and mMCP-7 with regard to weight loss, colon histopathology, and endoscopy scores. Microarray analyses were performed, and confirmatory real-time PCR, ELISA, and/or immunohistochemical analyses were carried out on a number of differentially expressed cytokines, chemokines, and matrix metalloproteinases (MMPs). The mMCP-6–null mice that had been exposed to DSS had significantly less weight loss as well as significantly lower pathology and endoscopy scores than similarly treated mMCP-6–expressing mice. This difference in colitis severity was confirmed endoscopically in the TNBS-treated mice. Evaluation of the distal colon segments revealed that numerous proinflammatory cytokines, chemokines that preferentially attract neutrophils, and MMPs that participate in the remodeling of the ECM were all markedly increased in the colons of DSS-treated WT mice relative to untreated WT mice and DSS-treated mMCP-6–null mice. Collectively, our data show that mMCP-6 (but not mMCP-7) is an essential MC-restricted mediator in chemically induced colitis and that this tryptase acts upstream of many of the factors implicated in IBD.

Collaboration


Dive into the Roberto Adachi's collaboration.

Top Co-Authors

Avatar

Michael J. Tuvim

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Burton F. Dickey

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Youlia Petrova

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ernestina Melicoff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alfredo J. Davalos

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Moreira

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elsa M. Rodarte

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Steven A. Krilis

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge