Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Alvarez is active.

Publication


Featured researches published by Roberto Alvarez.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Bone marrow cells adopt the cardiomyogenic fate in vivo

Marcello Rota; Jan Kajstura; Toru Hosoda; Claudia Bearzi; Serena Vitale; Grazia Esposito; Grazia Iaffaldano; M. Elena Padin-Iruegas; Arantxa Gonzalez; Roberto Rizzi; Narissa Small; John Muraski; Roberto Alvarez; Xiongwen Chen; Konrad Urbanek; Roberto Bolli; Steven R. Houser; Annarosa Leri; Mark A. Sussman; Piero Anversa

The possibility that adult bone marrow cells (BMCs) retain a remarkable degree of developmental plasticity and acquire the cardiomyocyte lineage after infarction has been challenged, and the notion of BMC transdifferentiation has been questioned. The center of the controversy is the lack of unequivocal evidence in favor of myocardial regeneration by the injection of BMCs in the infarcted heart. Because of the interest in cell-based therapy for heart failure, several approaches including gene reporter assay, genetic tagging, cell genotyping, PCR-based detection of donor genes, and direct immunofluorescence with quantum dots were used to prove or disprove BMC transdifferentiation. Our results indicate that BMCs engraft, survive, and grow within the spared myocardium after infarction by forming junctional complexes with resident myocytes. BMCs and myocytes express at their interface connexin 43 and N-cadherin, and this interaction may be critical for BMCs to adopt the cardiomyogenic fate. With time, a large number of myocytes and coronary vessels are generated. Myocytes show a diploid DNA content and carry, at most, two sex chromosomes. Old and new myocytes show synchronicity in calcium transients, providing strong evidence in favor of the functional coupling of these two cell populations. Thus, BMCs transdifferentiate and acquire the cardiomyogenic and vascular phenotypes restoring the infarcted heart. Together, our studies reveal that locally delivered BMCs generate de novo myocardium composed of integrated cardiomyocytes and coronary vessels. This process occurs independently of cell fusion and ameliorates structurally and functionally the outcome of the heart after infarction.


Nature Medicine | 2007

Pim-1 regulates cardiomyocyte survival downstream of Akt

John Muraski; Marcello Rota; Yu Misao; Jenna Fransioli; Christopher T. Cottage; Natalie Gude; Grazia Esposito; Francesca Delucchi; Michael L. Arcarese; Roberto Alvarez; Sailay Siddiqi; Gregory Emmanuel; Weitao Wu; Kimberlee Fischer; Joshua J. Martindale; Christopher C. Glembotski; Annarosa Leri; Jan Kajstura; Nancy S. Magnuson; Anton Berns; Remus M Beretta; Steven R. Houser; Erik Schaefer; Piero Anversa; Mark A. Sussman

The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1–deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-XL protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1–overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1–deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.


Physiological Reviews | 2011

MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

Mark A. Sussman; Mirko Völkers; Kimberlee Fischer; Brandi Bailey; Christopher T. Cottage; Shabana Din; Natalie Gude; Daniele Avitabile; Roberto Alvarez; Balaji Sundararaman; Pearl Quijada; Matt Mason; Mathias Konstandin; Amy Malhowski; Zhaokang Cheng; Mohsin Khan; Michael McGregor

One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.


Circulation Research | 2008

Activation of Notch-Mediated Protective Signaling in the Myocardium

Natalie Gude; Gregory Emmanuel; Weitao Wu; Christopher T. Cottage; Kimberlee Fischer; Pearl Quijada; John Muraski; Roberto Alvarez; Marta Rubio; Eric Schaefer; Mark A. Sussman

The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury.


Stem Cells | 2008

Evolution of the c-kit-Positive Cell Response to Pathological Challenge in the Myocardium

Jenna Fransioli; Brandi Bailey; Natalie Gude; Christopher T. Cottage; John Muraski; Gregory Emmanuel; Weitao Wu; Roberto Alvarez; Marta Rubio; Sergio Ottolenghi; Erik Schaefer; Mark A. Sussman

Cumulative evidence indicates that myocardium responds to growth or injury by recruitment of stem and/or progenitor cells that participate in repair and regenerative processes. Unequivocal identification of this population has been hampered by lack of reagents or markers specific to the recruited population, leading to controversies regarding the nature of these cells. Use of a transgenic mouse expressing green fluorescent protein driven by the c‐kit promoter allows for unambiguous identification of this cell population. Green fluorescent protein (GFP) driven by the c‐kit promoter labels a fraction of the c‐kit+ cells recognized by antibody labeling for c‐kit protein. Expression of GFP by the c‐kit promoter and accumulation of GFP‐positive cells in the myocardium is relatively high at birth compared with adult and declines between postnatal weeks 1 and 2, which tracks in parallel with expression of c‐kit protein and c‐kit‐positive cells. Acute cardiomyopathic injury by infarction prompts increased expression of both GFP protein and GFP‐labeled cells in the region of infarction relative to remote myocardium. Similar increases were observed for c‐kit protein and cells with a slightly earlier onset and decline relative to the GFP signal. Cells coexpressing GFP, c‐kit, and cardiogenic markers were apparent at 1–2 weeks postinfarction. Cardiac‐resident c‐kit+ cell cultures derived from the transgenic line express GFP that is diminished in parallel with c‐kit by induction of differentiation. The use of genetically engineered mice validates and extends the concept of c‐kit+ cells participating in the response to myocardial injury.


Circulation Research | 2010

Cardiac Progenitor Cell Cycling Stimulated by Pim-1 Kinase

Christopher T. Cottage; Brandi Bailey; Kimberlee Fischer; Daniele Avitabile; Brett Collins; Savilla Tuck; Pearl Quijada; Natalie Gude; Roberto Alvarez; John Muraski; Mark A. Sussman

Rationale: Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease. Objective: Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity. Methods and Results: Transgenic mice created with cardiac-specific Pim-1 overexpression (Pim-wt) exhibit enhanced Pim-1 expression in both cardiomyocytes and CPCs, both of which show increased proliferative activity assessed using 5-bromodeoxyuridine (BrdU), Ki-67, and c-Myc relative to nontransgenic controls. However, the total number of CPCs was not increased in the Pim-wt hearts during normal postnatal growth or after infarction challenge. These results suggest that Pim-1 overexpression leads to asymmetric division resulting in maintenance of the CPC population. Localization and quantitation of cell fate determinants Numb and &agr;-adaptin by confocal microscopy were used to assess frequency of asymmetric division in the CPC population. Polarization of Numb in mitotic phospho-histone positive cells demonstrates asymmetric division in 65% of the CPC population in hearts of Pim-wt mice versus 26% in nontransgenic hearts after infarction challenge. Similarly, Pim-wt hearts had fewer cells with uniform &agr;-adaptin staining indicative of symmetrically dividing CPCs, with 36% of the CPCs versus 73% in nontransgenic sections. Conclusions: These findings define a mechanistic basis for enhanced myocardial regeneration in transgenic mice overexpressing Pim-1 kinase.


Circulation Research | 2010

Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes

Gwynngelle A. Borillo; Matt Mason; Pearl Quijada; Mirko Völkers; Christopher T. Cottage; Michael McGregor; Shabana Din; Kimberlee Fischer; Natalie Gude; Daniele Avitabile; Steven B. Barlow; Roberto Alvarez; Silvia Truffa; Ross Whittaker; Matthew S. Glassy; Åsa B. Gustafsson; Christopher C. Glembotski; Roberta A. Gottlieb; Joan Heller Brown; Mark A. Sussman

Rationale: Cardioprotective signaling mediates antiapoptotic actions through multiple mechanisms including maintenance of mitochondrial integrity. Pim-1 kinase is an essential downstream effector of AKT-mediated cardioprotection but the mechanistic basis for maintenance of mitochondrial integrity by Pim-1 remains unexplored. This study details antiapoptotic actions responsible for enhanced cell survival in cardiomyocytes with elevated Pim-1 activity. Objective: The purpose of this study is to demonstrate that the cardioprotective kinase Pim-1 acts to inhibit cell death by preserving mitochondrial integrity in cardiomyocytes. Methods and Results: A combination of biochemical, molecular, and microscopic analyses demonstrate beneficial effects of Pim-1 on mitochondrial integrity. Pim-1 protein level increases in the mitochondrial fraction with a corresponding decrease in the cytosolic fraction of myocardial lysates from hearts subjected to 30 minutes of ischemia followed by 30 minutes of reperfusion. Cardiac-specific overexpression of Pim-1 results in higher levels of antiapoptotic Bcl-XL and Bcl-2 compared to samples from normal hearts. In response to oxidative stress challenge, Pim-1 preserves the inner mitochondrial membrane potential. Ultrastructure of the mitochondria is maintained by Pim-1 activity, which prevents swelling induced by calcium overload. Finally, mitochondria isolated from hearts created with cardiac-specific overexpression of Pim-1 show inhibition of cytochrome c release triggered by a truncated form of proapoptotic Bid. Conclusion: Cardioprotective action of Pim-1 kinase includes preservation of mitochondrial integrity during cardiomyopathic challenge conditions, thereby raising the potential for Pim-1 kinase activation as a therapeutic interventional approach to inhibit cell death by antagonizing proapoptotic Bcl-2 family members that regulate the intrinsic apoptotic pathway.


Circulation Research | 2012

Sca-1 Knockout Impairs Myocardial and Cardiac Progenitor Cell Function

Brandi Bailey; Jenna Fransioli; Natalie Gude; Roberto Alvarez; Xiaoxue Zhan; Åsa B. Gustafsson; Mark A. Sussman

Rationale: Cardiac progenitor cells are important for maintenance of myocardial structure and function, but molecular mechanisms governing these progenitor cells remain obscure and require elucidation to enhance regenerative therapeutic approaches. Objective: To understand consequences of stem cell antigen-1 (Sca-1) deletion on functional properties of c-kit+ cardiac progenitor cells and myocardial performance using a Sca-1 knock-out/green fluorescent protein knock-in reporter mouse (ScaKI). Methods and Results: Genetic deletion of Sca-1 results in early-onset cardiac contractile deficiency as determined by echocardiography and hemodynamics as well as age-associated hypertrophy. Resident cardiac progenitor cells in ScaKI mice do not respond to pathological damage in vivo, consistent with observations of impaired growth and survival of ScaKI cardiac progenitor cells in vitro. The molecular basis of the defect in ScaKI cardiac progenitor cells is associated with increased canonical Wnt signaling pathway activation consistent with molecular characteristics of lineage commitment. Conclusions: Genetic deletion of Sca-1 causes primary cardiac defects in myocardial contractility and repair consistent with impairment of resident cardiac progenitor cell proliferative capacity associated with altered canonical Wnt signaling.


European Heart Journal | 2011

Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis

Zhaokang Cheng; Mirko Völkers; Shabana Din; Daniele Avitabile; Mohsin Khan; Natalie Gude; Sadia Mohsin; Tao Bo; Silvia Truffa; Roberto Alvarez; Matt Mason; Kimberlee Fischer; Mathias Konstandin; Xiao-kun Zhang; Joan Heller Brown; Mark A. Sussman

AIMS The cascade of events leading to compromised mitochondrial integrity in response to stress is mediated by various combinatorial interactions of pro- and anti-apoptotic molecules. Nur77, an immediate early gene that encodes a nuclear orphan receptor, translocates from the nucleus to mitochondria to induce cytochrome c release and apoptosis in cancer cells in response to various pro-apoptotic treatments. However, the role of Nur77 in the cardiac setting is still unclear. The objective of this study is to determine the physiological relevance and pathophysiological importance of Nur77 in cardiomyocytes. METHODS AND RESULTS Myocardial Nur77 is upregulated following cardiomyopathic injury and, while expressed in the postnatal myocardium, declines in level within weeks after birth. Nur77 is localized predominantly in cardiomyocyte nuclei under normal conditions where it is not apoptotic, but translocates to mitochondria in response to oxidative stress both in vitro and in vivo. Mitochondrial localization of Nur77 induces cytochrome c release and typical morphological features of apoptosis, including chromatin condensation and DNA fragmentation. Knockdown of Nur77 rescued hydrogen peroxide-induced cardiomyocyte apoptosis. CONCLUSION Translocation of Nur77 from the nucleus to the mitochondria in cardiomyocytes results in the loss of mitochondrial integrity and subsequent apoptosis in response to ischaemia/reperfusion injury. Our findings identify Nur77 as a novel mediator of cardiomyocyte apoptosis and warrants further investigation of mitochondrial Nur77 translocation as a mechanism to control cell death in the treatment of ischaemic heart diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Pim-1 kinase antagonizes aspects of myocardial hypertrophy and compensation to pathological pressure overload

John Muraski; Kimberlee Fischer; Weitao Wu; Christopher T. Cottage; Pearl Quijada; Matt Mason; Shabana Din; Natalie Gude; Roberto Alvarez; Marcello Rota; Jan Kajstura; Zeping Wang; Erik Schaefer; Xiongen Chen; Scott MacDonnel; Nancy S. Magnuson; Stephen R. Houser; Piero Anversa; Mark A. Sussman

Pim-1 kinase exerts potent cardioprotective effects in the myocardium downstream of AKT, but the participation of Pim-1 in cardiac hypertrophy requires investigation. Cardiac-specific expression of Pim-1 (Pim-WT) or the dominant-negative mutant of Pim-1 (Pim-DN) in transgenic mice together with adenoviral-mediated overexpression of these Pim-1 constructs was used to delineate the role of Pim-1 in hypertrophy. Transgenic overexpression of Pim-1 protects mice from pressure-overload-induced hypertrophy relative to wild-type controls as evidenced by improved hemodynamic function, decreased apoptosis, increases in antihypertrophic proteins, smaller myocyte size, and inhibition of hypertrophic signaling after challenge. Similarly, Pim-1 overexpression in neonatal rat cardiomyocyte cultures inhibits hypertrophy induced by endothelin-1. On the cellular level, hearts of Pim-WT mice show enhanced incorporation of BrdU into myocytes and a hypercellular phenotype compared to wild-type controls after hypertrophic challenge. In comparison, transgenic overexpression of Pim-DN leads to dilated cardiomyopathy characterized by increased apoptosis, fibrosis, and severely depressed cardiac function. Furthermore, overexpression of Pim-DN leads to reduced contractility as evidenced by reduced Ca2+ transient amplitude and decreased percentage of cell shortening in isolated myocytes. These data support a pivotal role for Pim-1 in modulation of hypertrophy by impacting responses on molecular, cellular, and organ levels.

Collaboration


Dive into the Roberto Alvarez's collaboration.

Top Co-Authors

Avatar

Mark A. Sussman

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Natalie Gude

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Pearl Quijada

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Kimberlee Fischer

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Muraski

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Daniele Avitabile

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Kelli Ilves

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Shabana Din

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Brandi Bailey

San Diego State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge