Roberto Arroyo
University of Alcalá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Arroyo.
intelligent vehicles symposium | 2014
Luis Miguel Bergasa; Daniel Almeria; Javier Almazán; J. Javier Yebes; Roberto Arroyo
This paper presents DriveSafe, a new driver safety app for iPhones that detects inattentive driving behaviors and gives corresponding feedback to drivers, scoring their driving and alerting them in case their behaviors are unsafe. It uses computer vision and pattern recognition techniques on the iPhone to assess whether the driver is drowsy or distracted using the rear-camera, the microphone, the inertial sensors and the GPS. We present the general architecture of DriveSafe and evaluate its performance using data from 12 drivers in two different studies. The first one evaluates the detection of some inattentive driving behaviors obtaining an overall precision of 82% at 92% of recall. The second one compares the scores between DriveSafe vs the commercial AXA Drive app obtaining a better valuation to its operation. DriveSafe is the first app for smartphones based on inbuilt sensors able to detect inattentive behaviors evaluating the quality of the driving at the same time. It represents a new disruptive technology because, on the one hand, it provides similar ADAS features that found in luxury cars, and on the other hand, it presents a viable alternative for the “blackboxes” installed in vehicles by the insurance companies.
international conference on intelligent transportation systems | 2013
David Fernández Llorca; Roberto Arroyo; Miguel Ángel Sotelo
In this paper a new vehicle logo recognition approach is presented using Histograms of Oriented Gradients (HOG) and Support Vector Machines (SVM). The system is specifically devised to work with images supplied by traffic cameras where the logos appear with low resolution. A sliding-window technique combined with a majority voting scheme are used to provide the estimated car manufacturer. The proposed approach is assessed on a set of 3.579 vehicle images, captured by two different traffic cameras that belong to 27 distinctive vehicle manufacturers. The reported results show an overall recognition rate of 92.59%, which supports the use of the system for real applications.
international conference on robotics and automation | 2015
Roberto Arroyo; Pablo F. Alcantarilla; Luis Miguel Bergasa; Eduardo Romera
Life-long visual localization is one of the most challenging topics in robotics over the last few years. The difficulty of this task is in the strong appearance changes that a place suffers due to dynamic elements, illumination, weather or seasons. In this paper, we propose a novel method (ABLE-M) to cope with the main problems of carrying out a robust visual topological localization along time. The novelty of our approach resides in the description of sequences of monocular images as binary codes, which are extracted from a global LDB descriptor and efficiently matched using FLANN for fast nearest neighbor search. Besides, an illumination invariant technique is applied. The usage of the proposed binary description and matching method provides a reduction of memory and computational costs, which is necessary for long-term performance. Our proposal is evaluated in different life-long navigation scenarios, where ABLE-M outperforms some of the main state-of-the-art algorithms, such as WI-SURF, BRIEF-Gist, FAB-MAP or SeqSLAM. Tests are presented for four public datasets where a same route is traversed at different times of day or night, along the months or across all four seasons.
ieee intelligent vehicles symposium | 2013
Javier Almazán; Luis Miguel Bergasa; J. Javier Yebes; Rafael Barea; Roberto Arroyo
Nowadays, smartphones are widely used in the world, and generally, they are equipped with many sensors. In this paper we study how powerful the low-cost embedded IMU and GPS could become for Intelligent Vehicles. The information given by accelerometer and gyroscope is useful if the relations between the smartphone reference system, the vehicle reference system and the world reference system are known. Commonly, the magnetometer sensor is used to determine the orientation of the smartphone, but its main drawback is the high influence of electromagnetic interference. In view of this, we propose a novel automatic method to calibrate a smartphone on board a vehicle using its embedded IMU and GPS, based on longitudinal vehicle acceleration. To the best of our knowledge, this is the first attempt to estimate the yaw angle of a smartphone relative to a vehicle in every case, even on non-zero slope roads. Furthermore, in order to decrease the impact of IMU noise, an algorithm based on Kalman Filter and fitting a mixture of Gaussians is introduced. The results show that the system achieves high accuracy, the typical error is 1%, and is immune to electromagnetic interference.
Expert Systems With Applications | 2015
Roberto Arroyo; J. Javier Yebes; Luis Miguel Bergasa; Iván García Daza; Javier Almazán
Tracking-by-detection based on segmentation, Kalman predictions and LSAP association.Occlusion management: SVM kernel metric for GCH+LBP+HOG image features.Overall performance near to 85% while tracking under occlusions in CAVIAR dataset.Human behavior analysis (exits, loitering, etc.) in naturalistic scenes in shops.Real-time multi-camera performance with a processing capacity near to 50fps/camera. Expert video-surveillance systems are a powerful tool applied in varied scenarios with the aim of automatizing the detection of different risk situations and helping human security officers to take appropriate decisions in order to enhance the protection of assets. In this paper, we propose a complete expert system focused on the real-time detection of potentially suspicious behaviors in shopping malls. Our video-surveillance methodology contributes several innovative proposals that compose a robust application which is able to efficiently track the trajectories of people and to discover questionable actions in a shop context. As a first step, our system applies an image segmentation to locate the foreground objects in scene. In this case, the most effective background subtraction algorithms of the state of the art are compared to find the most suitable for our expert video-surveillance application. After the segmentation stage, the detected blobs may represent full or partial people bodies, thus, we have implemented a novel blob fusion technique to group the partial blobs into the final human targets. Then, we contribute an innovative tracking algorithm which is not only based on people trajectories as the most part of state-of-the-art methods, but also on people appearance in occlusion situations. This tracking is carried out employing a new two-step method: (1) the detections-to-tracks association is solved by using Kalman filtering combined with an own-designed cost optimization for the Linear Sum Assignment Problem (LSAP); and (2) the occlusion management is based on SVM kernels to compute distances between appearance features such as GCH, LBP and HOG. The application of these three features for recognizing human appearance provides a great performance compared to other description techniques, because color, texture and gradient information are effectively combined to obtain a robust visual description of people. Finally, the resultant trajectories of people obtained in the tracking stage are processed by our expert video-surveillance system for analyzing human behaviors and identifying potential shopping mall alarm situations, as are shop entry or exit of people, suspicious behaviors such as loitering and unattended cash desk situations. With the aim of evaluating the performance of some of the main contributions of our proposal, we use the publicly available CAVIAR dataset for testing the proposed tracking method with a success near to 85% in occlusion situations. According to this performance, we corroborate in the presented results that the precision and efficiency of our tracking method is comparable and slightly superior to the most recent state-of-the-art works. Furthermore, the alarms given off by our application are evaluated on a naturalistic private dataset, where it is evidenced that our expert video-surveillance system can effectively detect suspicious behaviors with a low computational cost in a shopping mall context.
intelligent vehicles symposium | 2014
Roberto Arroyo; Pablo F. Alcantarilla; Luis Miguel Bergasa; J. Javier Yebes; Sergio Gámez
Visual loop closure detection plays a key role in navigation systems for intelligent vehicles. Nowadays, state-of-the-art algorithms are focused on unidirectional loop closures, but there are situations where they are not sufficient for identifying previously visited places. Therefore, the detection of bidirectional loop closures when a place is revisited in a different direction provides a more robust visual navigation. We propose a novel approach for identifying bidirectional loop closures on panoramic image sequences. Our proposal combines global binary descriptors and a matching strategy based on cross-correlation of sub-panoramas, which are defined as the different parts of a panorama. A set of experiments considering several binary descriptors (ORB, BRISK, FREAK, LDB) is provided, where LDB excels as the most suitable. The proposed matching proffers a reliable bidirectional loop closure detection, which is not efficiently solved in any other previous research. Our method is successfully validated and compared against FAB-MAP and BRIEF-Gist. The Ford Campus and the Oxford New College datasets are considered for evaluation.
Sensors | 2014
Iván García Daza; Luis Miguel Bergasa; Sebastián Bronte; J. Javier Yebes; Javier Almazán; Roberto Arroyo
This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study.
intelligent robots and systems | 2016
Roberto Arroyo; Pablo F. Alcantarilla; Luis Miguel Bergasa; Eduardo Romera
The extreme variability in the appearance of a place across the four seasons of the year is one of the most challenging problems in life-long visual topological localization for mobile robotic systems and intelligent vehicles. Traditional solutions to this problem are based on the description of images using hand-crafted features, which have been shown to offer moderate invariance against seasonal changes. In this paper, we present a new proposal focused on automatically learned descriptors, which are processed by means of a technique recently popularized in the computer vision community: Convolutional Neural Networks (CNNs). The novelty of our approach relies on fusing the image information from multiple convolutional layers at several levels and granularities. In addition, we compress the redundant data of CNN features into a tractable number of bits for efficient and robust place recognition. The final descriptor is reduced by applying simple compression and binarization techniques for fast matching using the Hamming distance. An exhaustive experimental evaluation confirms the improved performance of our proposal (CNN-VTL) with respect to state-of-the-art methods over varied long-term datasets recorded across seasons.
intelligent robots and systems | 2014
Roberto Arroyo; Pablo F. Alcantarilla; Luis Miguel Bergasa; J. Javier Yebes; Sebastián Bronte
We present a novel approach for place recognition and loop closure detection based on binary codes and disparity information using stereo images. Our method (ABLE-S) applies the Local Difference Binary (LDB) descriptor in a global framework to obtain a robust global image description, which is initially based on intensity and gradient pairwise comparisons. LDB has a higher descriptiveness power than other popular alternatives such as BRIEF, which only relies on intensity. In addition, we integrate disparity information into the binary descriptor (D-LDB). Disparity provides valuable information which decreases the effect of some typical problems in place recognition such as perceptual aliasing. The KITTI Odometry dataset is mainly used to test our approach due to its varied environments, challenging situations and length. Additionally, a loop closure ground-truth is introduced in this work for the KITTI Odometry benchmark with the aim of standardizing a robust evaluation methodology for comparing different previous algorithms against our method and for future benchmarking of new proposals. Attending to the presented results, our method allows a fast and more effective visual loop closure detection compared to state-of-the-art algorithms such as FAB-MAP, WI-SURF and BRIEF-Gist.
Sensors | 2013
Andres F. Cela; J. Javier Yebes; Roberto Arroyo; Luis Miguel Bergasa; Rafael Barea; Elena López
Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robots back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.