Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Bonasio is active.

Publication


Featured researches published by Roberto Bonasio.


Nature Immunology | 2001

Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.

Maria Rescigno; Matteo Urbano; Barbara Valzasina; Maura Francolini; Gianluca Rotta; Roberto Bonasio; Francesca Granucci; Jean Pierre Kraehenbuhl; Paola Ricciardi-Castagnoli

Penetration of the gut mucosa by pathogens expressing invasion genes is believed to occur mainly through specialized epithelial cells, called M cells, that are located in Peyers patches. However, Salmonella typhimurium that are deficient in invasion genes encoded by Salmonella pathogenicity island 1 (SPI1) are still able to reach the spleen after oral administration. This suggests the existence of an alternative route for bacterial invasion, one that is independent of M cells. We report here a new mechanism for bacterial uptake in the mucosa tissues that is mediated by dendritic cells (DCs). DCs open the tight junctions between epithelial cells, send dendrites outside the epithelium and directly sample bacteria. In addition, because DCs express tight-junction proteins such as occludin, claudin 1 and zonula occludens 1, the integrity of the epithelial barrier is preserved.


Science | 2010

Molecular Signals of Epigenetic States

Roberto Bonasio; Shengjiang Tu; Danny Reinberg

Epigenetic signals are responsible for the establishment, maintenance, and reversal of metastable transcriptional states that are fundamental for the cell’s ability to “remember” past events, such as changes in the external environment or developmental cues. Complex epigenetic states are orchestrated by several converging and reinforcing signals, including transcription factors, noncoding RNAs, DNA methylation, and histone modifications. Although all of these pathways modulate transcription from chromatin in vivo, the mechanisms by which epigenetic information is transmitted through cell division remain unclear. Because epigenetic states are metastable and change in response to the appropriate signals, a deeper understanding of their molecular framework will allow us to tackle the dysregulation of epigenetics in disease.


Molecular Cell | 2012

PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes

Zhonghua Gao; Jin Zhang; Roberto Bonasio; Francesco Strino; Ayana Sawai; Fabio Parisi; Yuval Kluger; Danny Reinberg

The heterogeneous nature of mammalian PRC1 complexes has hindered our understanding of their biological functions. Here, we present a comprehensive proteomic and genomic analysis that uncovered six major groups of PRC1 complexes, each containing a distinct PCGF subunit, a RING1A/B ubiquitin ligase, and a unique set of associated polypeptides. These PRC1 complexes differ in their genomic localization, and only a small subset colocalize with H3K27me3. Further biochemical dissection revealed that the six PCGF-RING1A/B combinations form multiple complexes through association with RYBP or its homolog YAF2, which prevents the incorporation of other canonical PRC1 subunits, such as CBX, PHC, and SCM. Although both RYBP/YAF2- and CBX/PHC/SCM-containing complexes compact chromatin, only RYBP stimulates the activity of RING1B toward H2AK119ub1, suggesting a central role in PRC1 function. Knockdown of RYBP in embryonic stem cells compromised their ability to form embryoid bodies, likely because of defects in cell proliferation and maintenance of H2AK119ub1 levels.


Science | 2010

Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator.

Roberto Bonasio; Guojie Zhang; Chaoyang Ye; Navdeep S. Mutti; Xiaodong Fang; Nan Qin; Greg Donahue; Pengcheng Yang; Qiye Li; Cai Li; Pei Zhang; Zhiyong Huang; Shelley L. Berger; Danny Reinberg; Jun Wang; Jürgen Liebig

Ant Variation Ants of the same genotype can exhibit numerous phenotypic forms and develop multiple functional castes within a colony. Bonasio et al. (p. 1068) sequenced the genomes of two ant species exhibiting differences in caste development—Camponotus floridanus and Harpegnathos saltator—and used the sequences to compare gene expression and identify differences in epigenetic gene regulation that lead to the phenotypic differences. Ants may offer a model system for studying the role of epigenetics in behavior and development. Comparison reveals the epigenetic controls on caste development in ants. The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera correlates with CpG depletion. Comparison of gene expression in different castes identified up-regulation of telomerase and sirtuin deacetylases in longer-lived H. saltator reproductives, caste-specific expression of microRNAs and SMYD histone methyltransferases, and differential regulation of genes implicated in neuronal function and chemical communication. Our findings provide clues on the molecular differences between castes in these two ants and establish a new experimental model to study epigenetics in aging and behavior.


Nature Immunology | 2006

Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus

Roberto Bonasio; M. Lucila Scimone; Patrick Schaerli; Nir Grabie; Andrew H. Lichtman; Ulrich H. von Andrian

Dendritic cell (DC) presentation of self antigen to thymocytes is essential to the establishment of central tolerance. We show here that circulating DCs were recruited to the thymic medulla through a three-step adhesion cascade involving P-selectin, interactions of the integrin VLA-4 with its ligand VCAM-1, and pertussis toxin–sensitive chemoattractant signaling. Ovalbumin-specific OT-II thymocytes were selectively deleted after intravenous injection of antigen-loaded exogenous DCs. We documented migration of endogenous DCs to the thymus in parabiotic mice and after painting mouse skin with fluorescein isothiocyanate. Antibody to VLA-4 blocked the accumulation of peripheral tissue–derived DCs in the thymus and also inhibited the deletion of OT-II thymocytes in mice expressing membrane-bound ovalbumin in cardiac myocytes. These findings identify a migratory route by which peripheral DCs may contribute to central tolerance.


Nature Immunology | 2005

Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells

Lois L. Cavanagh; Roberto Bonasio; Irina B. Mazo; Cornelia Halin; Guiying Cheng; Adrianus W. M. van der Velden; Annaiah Cariappa; Catherine M. Chase; Paul S. Russell; Michael N. Starnbach; Pandelakis A. Koni; Shiv Pillai; Wolfgang Weninger; Ulrich H. von Andrian

Dendritic cells (DCs) carry antigen from peripheral tissues via lymphatics to lymph nodes. We report here that differentiated DCs can also travel from the periphery into the blood. Circulating DCs migrated to the spleen, liver and lung but not lymph nodes. They also homed to the bone marrow, where they were retained better than in most other tissues. Homing of DCs to the bone marrow depended on constitutively expressed vascular cell adhesion molecule 1 and endothelial selectins in bone marrow microvessels. Two-photon intravital microscopy in bone marrow cavities showed that DCs formed stable antigen-dependent contacts with bone marrow–resident central memory T cells. Moreover, using this previously unknown migratory pathway, antigen-pulsed DCs were able to trigger central memory T cell–mediated recall responses in the bone marrow.


Current Biology | 2012

Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator.

Roberto Bonasio; Qiye Li; Jinmin Lian; Navdeep S. Mutti; Lijun Jin; Hongmei Zhao; Pei Zhang; Ping Wen; Hui Xiang; Yun Ding; Zonghui Jin; Steven Shen; Zongji Wang; Wen Wang; Jun Wang; Shelley L. Berger; Jürgen Liebig; Guojie Zhang; Danny Reinberg

BACKGROUND Ant societies comprise individuals belonging to different castes characterized by specialized morphologies and behaviors. Because ant embryos can follow different developmental trajectories, epigenetic mechanisms must play a role in caste determination. Ants have a full set of DNA methyltransferases and their genomes contain methylcytosine. To determine the relationship between DNA methylation and phenotypic plasticity in ants, we obtained and compared the genome-wide methylomes of different castes and developmental stages of Camponotus floridanus and Harpegnathos saltator. RESULTS In the ant genomes, methylcytosines are found both in symmetric CG dinucleotides (CpG) and non-CpG contexts and are strongly enriched at exons of active genes. Changes in exonic DNA methylation correlate with alternative splicing events such as exon skipping and alternative splice site selection. Several genes exhibit caste-specific and developmental changes in DNA methylation that are conserved between the two species, including genes involved in reproduction, telomere maintenance, and noncoding RNA metabolism. Several loci are methylated and expressed monoallelically, and in some cases, the choice of methylated allele depends on the caste. CONCLUSIONS These first ant methylomes and their intra- and interspecies comparison reveal an exonic methylation pattern that points to a connection between DNA methylation and splicing. The presence of monoallelic DNA methylation and the methylation of non-CpG sites in all samples suggest roles in genome regulation in these social insects, including the intriguing possibility of parental or caste-specific genomic imprinting.


Nature Structural & Molecular Biology | 2013

PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells

Syuzo Kaneko; Jinsook Son; Steven Shen; Danny Reinberg; Roberto Bonasio

EZH2 is the catalytic subunit of PRC2, a central epigenetic repressor essential for development processes in vivo and for the differentiation of embryonic stem cells (ESCs) in vitro. The biochemical function of PRC2 in depositing repressive H3K27me3 marks is well understood, but how it is regulated and directed to specific genes before and during differentiation remains unknown. Here, we report that PRC2 binds at low levels to a majority of promoters in mouse ESCs, including many that are active and devoid of H3K27me3. Using in vivo RNA-protein cross-linking, we show that EZH2 directly binds the 5′ region of nascent RNAs transcribed from a subset of these promoters and that these binding events correlate with decreased H3K27me3. Our findings suggest a molecular mechanism by which PRC2 senses the transcriptional state of the cell and translates it into epigenetic information.


Annual Review of Genetics | 2014

Regulation of Transcription by Long Noncoding RNAs

Roberto Bonasio; Ramin Shiekhattar

Over the past decade there has been a greater understanding of genomic complexity in eukaryotes ushered in by the immense technological advances in high-throughput sequencing of DNA and its corresponding RNA transcripts. This has resulted in the realization that beyond protein-coding genes, there are a large number of transcripts that do not encode for proteins and, therefore, may perform their function through RNA sequences and/or through secondary and tertiary structural determinants. This review is focused on the latest findings on a class of noncoding RNAs that are relatively large (>200 nucleotides), display nuclear localization, and use different strategies to regulate transcription. These are exciting times for discovering the biological scope and the mechanism of action for these RNA molecules, which have roles in dosage compensation, imprinting, enhancer function, and transcriptional regulation, with a great impact on development and disease.


Science | 2011

The C-Terminal Domain of RNA Polymerase II Is Modified by Site-Specific Methylation

Robert J. Sims; Luis Alejandro Rojas; David B. Beck; Roberto Bonasio; Roland Schüller; William J. Drury; Dirk Eick; Danny Reinberg

The expression of small nuclear RNAs and small nucleolar RNAs is regulated by modification at a single arginine residue. The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1−/− mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.

Collaboration


Dive into the Roberto Bonasio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelley L. Berger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Liebig

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun Raj

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Chongsheng He

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel F. Simola

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge