Roberto C. Alamino
Aston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto C. Alamino.
PLOS ONE | 2011
Jörg Reichardt; Roberto C. Alamino; David Saad
Understanding a complex networks structure holds the key to understanding its function. The physics community has contributed a multitude of methods and analyses to this cross-disciplinary endeavor. Structural features exist on both the microscopic level, resulting from differences between single node properties, and the mesoscopic level resulting from properties shared by groups of nodes. Disentangling the determinants of network structure on these different scales has remained a major, and so far unsolved, challenge. Here we show how multiscale generative probabilistic exponential random graph models combined with efficient, distributive message-passing inference techniques can be used to achieve this separation of scales, leading to improved detection accuracy of latent classes as demonstrated on benchmark problems. It sheds new light on the statistical significance of motif-distributions in neural networks and improves the link-prediction accuracy as exemplified for gene-disease associations in the highly consequential Online Mendelian Inheritance in Man database.
IEEE Transactions on Neural Networks | 2007
E. de Oliveira; Roberto C. Alamino
In this letter, we derive continuum equations for the generalization error of the Bayesian online algorithm (BOnA) for the one-layer perceptron with a spherical covariance matrix using the Rosenblatt potential and show, by numerical calculations, that the asymptotic performance of the algorithm is the same as the one for the optimal algorithm found by means of variational methods with the added advantage that the BOnA does not use any inaccessible information during learning
Journal of Statistical Mechanics: Theory and Experiment | 2009
Roberto C. Alamino; David Saad
Typical properties of sparse random matrices over finite (Galois) fields are studied, in the limit of large matrices, using techniques from the physics of disordered systems. For the case of a finite field GF(q) with prime order q, we present results for the average kernel dimension, average dimension of the eigenvector spaces and the distribution of the eigenvalues. The number of matrices for a given distribution of entries is also calculated for the general case. The significance of these results to error-correcting codes and random graphs is also discussed.
Physical Review E | 2008
Roberto C. Alamino; David Saad
Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over Galois fields GF(q) , with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica-symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average numbers of random matrices for any general connectivity profile. We present numerical results for particular distributions.
Journal of Physics A | 2007
Roberto C. Alamino; David Saad
Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases.
arXiv: Machine Learning | 2006
Roberto C. Alamino; Nestor Caticha
We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented.
Journal of Physics A | 2015
Roberto C. Alamino
This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases and general networks. By applying this measure to a series of objects, it is shown that it can be consistently used for both small scale structures with exact symmetry breaking and large scale patterns, for which, differently from similar measures, it consistently discriminates between repetitive patterns, random configurations and self-similar structures.
Physical Review E | 2013
Roberto C. Alamino; Amit K. Chattopadhyay; David Saad
We investigate a simplified model of two fully connected magnetic systems maintained at different temperatures by virtue of being connected to two independent thermal baths while simultaneously being interconnected with each other. Using generating functional analysis, commonly used in statistical mechanics, we find exactly soluble expressions for their individual magnetization that define a two-dimensional nonlinear map, the equations of which have the same form as those obtained for densely connected equilibrium systems. Steady states correspond to the fixed points of this map, separating the parameter space into a rich set of nonequilibrium phases that we analyze in asymptotically high and low (nonequilibrium) temperature limits. The theoretical formalism is shown to revert to the classical nonequilibrium steady state problem for two interacting systems with a nonzero heat transfer between them that catalyzes a phase transition between ambient nonequilibrium states.
Physical Review E | 2013
Roberto C. Alamino; Juan P. Neirotti; David Saad
Inference algorithms based on evolving interactions between replicated solutions are introduced and analyzed on a prototypical NP-hard problem: the capacity of the binary Ising perceptron. The efficiency of the algorithm is examined numerically against that of the parallel tempering algorithm, showing improved performance in terms of the results obtained, computing requirements and simplicity of implementation.
Journal of Physics A | 2016
Roberto C. Alamino
This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piagets ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.