Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto C. Myers is active.

Publication


Featured researches published by Roberto C. Myers.


Nature Materials | 2010

Observation of the spin-Seebeck effect in a ferromagnetic semiconductor

Christopher M. Jaworski; Jing Yang; S. Mack; D. D. Awschalom; Joseph P. Heremans; Roberto C. Myers

Reducing the heat generated in traditional electronics is a chief motivation for the development of spin-based electronics, called spintronics. Spin-based transistors that do not strictly rely on the raising or lowering of electrostatic barriers can overcome scaling limits in charge-based transistors. Spin transport in semiconductors might also lead to dissipation-less information transfer with pure spin currents. Despite these thermodynamic advantages, little experimental literature exists on the thermal aspects of spin transport in solids. A recent and surprising exception was the discovery of the spin-Seebeck effect, reported as a measurement of a redistribution of spins along the length of a sample of permalloy (NiFe) induced by a temperature gradient. This macroscopic spatial distribution of spins is, surprisingly, many orders of magnitude larger than the spin diffusion length, which has generated strong interest in the thermal aspects of spin transport. Here, the spin-Seebeck effect is observed in a ferromagnetic semiconductor, GaMnAs, which allows flexible design of the magnetization directions, a larger spin polarization, and measurements across the magnetic phase transition. This effect is observed even in the absence of longitudinal charge transport. The spatial distribution of spin currents is maintained across electrical breaks, highlighting the local nature of this thermally driven effect.


Applied Physics Letters | 2003

Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers

K. C. Ku; S. J. Potashnik; R. F. Wang; S. H. Chun; P. Schiffer; Nitin Samarth; M. J. Seong; A. Mascarenhas; Ezekiel Johnston-Halperin; Roberto C. Myers; A. C. Gossard; D. D. Awschalom

We report Curie temperatures up to 150 K in annealed Ga1−xMnxAs epilayers grown with a relatively low As:Ga beam equivalent pressure ratio. A variety of measurements (magnetization, Hall effect, magnetic circular dichroism and Raman scattering) suggest that the higher Curie temperature results from an enhanced free hole density. The data also indicate that, in addition to the carrier concentration, the sample thickness limits the maximum attainable Curie temperature in this material, suggesting that the free surface of Ga1−xMnxAs epilayers may be important in determining their physical properties.


Nature | 2004

Coherent spin manipulation without magnetic fields in strained semiconductors.

Y. Kato; Roberto C. Myers; A. C. Gossard; D. D. Awschalom

A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin–orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing and spintronics, forming the basis of various device proposals. For example, the concept of spin field-effect transistors is based on spin precession due to the spin–orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to ∼30 MHz.


Nature Physics | 2005

Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases

V. Sih; Roberto C. Myers; Y. Kato; W. H. Lau; A. C. Gossard; D. D. Awschalom

Spin–orbit coupling in semiconductors relates the spin of an electron to its momentum, and provides a pathway for electrically initializing and manipulating electron spins for applications in spintronics1 and spin-based quantum information processing2. This coupling can be regulated with quantum confinement in semiconductor heterostructures through band-structure engineering. Here we investigate the spin Hall effect3,4 and current-induced spin polarization5,6 in a two-dimensional electron gas confined in (110) AlGaAs quantum wells using Kerr rotation microscopy. In contrast to previous measurements7,8,9,10, the spin Hall profile shows complex structure and the current-induced spin polarization is out-of-plane. The experiments map the strong dependence of the current-induced spin polarization to the crystal axis along which the electric field is applied, reflecting the anisotropy of the spin–orbit interaction. These results reveal opportunities for tuning a spin source using quantum confinement and device engineering in non-magnetic materials.


Physical Review Letters | 2004

Current-Induced Spin Polarization in Strained Semiconductors

Yuko Kato; Roberto C. Myers; A. C. Gossard; D. D. Awschalom

The polarization of conduction electron spins due to an electrical current is observed in strained nonmagnetic semiconductors using static and time-resolved Faraday rotation. The density, lifetime, and orientation rate of the electrically polarized spins are characterized by a combination of optical and electrical methods. In addition, the dynamics of the current-induced spins are investigated by utilizing electrical pulses generated from a photoconductive switch. These results demonstrate the possibility of a spin source for semiconductor spintronic devices without the use of magnetic materials.


Applied Physics Letters | 2014

p-type doping of MoS2 thin films using Nb

Masihhur R. Laskar; Digbijoy N. Nath; Lu Ma; E. Lee; Choong Hee Lee; Thomas F. Kent; Zihao Yang; Rohan Mishra; Manuel A. Roldan; Juan-Carlos Idrobo; Sokrates T. Pantelides; Stephen J. Pennycook; Roberto C. Myers; Yiying Wu; Siddharth Rajan

We report on the first demonstration of p-type doping in large area few-layer films of (0001)-oriented chemical vapor deposited MoS2. Niobium was found to act as an efficient acceptor up to relatively high density in MoS2 films. For a hole density of 3.1 × 1020 cm−3, Hall mobility of 8.5 cm2 V−1 s−1 was determined, which matches well with the theoretically expected values. X-ray diffraction scans and Raman characterization indicated that the film had good out-of-plane crystalline quality. Absorption measurements showed that the doped sample had similar characteristics to high-quality undoped samples, with a clear absorption edge at 1.8 eV. Scanning transmission electron microscope imaging showed ordered crystalline nature of the Nb-doped MoS2 layers stacked in the [0001] direction. This demonstration of substitutional p-doping in large area epitaxial MoS2 could help in realizing a wide variety of electrical and opto-electronic devices based on layered metal dichalcogenides.


Nature | 2012

Giant spin Seebeck effect in a non-magnetic material

Christopher M. Jaworski; Roberto C. Myers; Ezekiel Johnston-Halperin; Joseph P. Heremans

The spin Seebeck effect is observed when a thermal gradient applied to a spin-polarized material leads to a spatially varying transverse spin current in an adjacent non-spin-polarized material, where it gets converted into a measurable voltage. It has been previously observed with a magnitude of microvolts per kelvin in magnetically ordered materials, ferromagnetic metals, semiconductors and insulators. Here we describe a signal in a non-magnetic semiconductor (InSb) that has the hallmarks of being produced by the spin Seebeck effect, but is three orders of magnitude larger (millivolts per kelvin). We refer to the phenomenon that produces it as the giant spin Seebeck effect. Quantizing magnetic fields spin-polarize conduction electrons in semiconductors by means of Zeeman splitting, which spin–orbit coupling amplifies by a factor of ∼25 in InSb. We propose that the giant spin Seebeck effect is mediated by phonon–electron drag, which changes the electrons’ momentum and directly modifies the spin-splitting energy through spin–orbit interactions. Owing to the simultaneously strong phonon–electron drag and spin–orbit coupling in InSb, the magnitude of the giant spin Seebeck voltage is comparable to the largest known classical thermopower values.


Nano Letters | 2012

Polarization-Induced pn Diodes in Wide-Band-Gap Nanowires with Ultraviolet Electroluminescence

Santino D. Carnevale; Thomas F. Kent; Patrick J. Phillips; M.J. Mills; Siddharth Rajan; Roberto C. Myers

Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% and back to 0% Al, we show the formation of a polarization-induced pn junction even in the absence of any impurity doping. Since electrons and holes are injected from AlN barriers into quantum disk active regions, graded nanowires allow deep ultraviolet LEDs across the AlGaN band-gap range with electroluminescence observed from 3.4 to 5 eV. Polarization-induced p-type conductivity in nanowires is shown to be possible even without supplemental acceptor doping, demonstrating the advantage of polarization engineering in nanowires compared with planar films and providing a strategy for improving conductivity in wide-band-gap semiconductors. As polarization charge is uniform within each unit cell, polarization-induced conductivity without impurity doping provides a solution to the problem of conductivity uniformity in nanowires and nanoelectronics and opens a new field of polarization engineering in nanostructures that may be applied to other polar semiconductors.


Nano Letters | 2011

Three-Dimensional GaN/AlN Nanowire Heterostructures by Separating Nucleation and Growth Processes

Santino D. Carnevale; Jing Yang; Patrick J. Phillips; M.J. Mills; Roberto C. Myers

Bottom-up nanostructure assembly has been a central theme of materials synthesis over the past few decades. Semiconductor quantum dots and nanowires provide additional degrees of freedom for charge confinement, strain engineering, and surface sensitivity-properties that are useful to a wide range of solid state optical and electronic technologies. A central challenge is to understand and manipulate nanostructure assembly to reproducibly generate emergent structures with the desired properties. However, progress is hampered due to the interdependence of nucleation and growth phenomena. Here we show that by dynamically adjusting the growth kinetics, it is possible to separate the nucleation and growth processes in spontaneously formed GaN nanowires using a two-step molecular beam epitaxy technique. First, a growth phase diagram for these nanowires is systematically developed, which allows for control of nanowire density over three orders of magnitude. Next, we show that by first nucleating nanowires at a low temperature and then growing them at a higher temperature, height and density can be independently selected while maintaining the target density over long growth times. GaN nanowires prepared using this two-step procedure are overgrown with three-dimensionally layered and topologically complex heterostructures of (GaN/AlN). By adjusting the growth temperature in the second growth step either vertical or coaxial nanowire superlattices can be formed. These results indicate that a two-step method allows access to a variety of kinetics at which nanowire nucleation and adatom mobility are adjustable.


Physical Review Letters | 2011

Spin-seebeck effect: a phonon driven spin distribution.

Christopher M. Jaworski; J. Yang; S. Mack; D. D. Awschalom; Roberto C. Myers; Joseph P. Heremans

Here we report on measurements of the spin-Seebeck effect of GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.

Collaboration


Dive into the Roberto C. Myers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Gossard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Awschalom

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Nitin Samarth

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Phillips

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge