Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Cappai is active.

Publication


Featured researches published by Roberto Cappai.


Neuron | 2008

Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ

Paul A. Adlard; Robert A. Cherny; David Finkelstein; Elisabeth Gautier; Elysia Robb; Mikhalina Cortes; Irene Volitakis; Xiang Liu; Jeffrey P. Smith; Keyla Perez; Katrina M. Laughton; Qiao-Xin Li; Susan A. Charman; Joseph A. Nicolazzo; Simon Wilkins; Karolina Deleva; Toni Lynch; Gaik Beng Kok; Craig W. Ritchie; Rudolph E. Tanzi; Roberto Cappai; Colin L. Masters; Kevin J. Barnham; Ashley I. Bush

As a disease-modifying approach for Alzheimers disease (AD), clioquinol (CQ) targets beta-amyloid (Abeta) reactions with synaptic Zn and Cu yet promotes metal uptake. Here we characterize the second-generation 8-hydroxy quinoline analog PBT2, which also targets metal-induced aggregation of Abeta, but is more effective as a Zn/Cu ionophore and has greater blood-brain barrier permeability. Given orally to two types of amyloid-bearing transgenic mouse models of AD, PBT2 outperformed CQ by markedly decreasing soluble interstitial brain Abeta within hours and improving cognitive performance to exceed that of normal littermate controls within days. Nontransgenic mice were unaffected by PBT2. The current data demonstrate that ionophore activity, inhibition of in vitro metal-mediated Abeta reactions, and blood-brain barrier permeability are indices that predict a potential disease-modifying drug for AD. The speed of recovery of the animals underscores the acutely reversible nature of the cognitive deficits associated with transgenic models of AD.


Journal of Biological Chemistry | 2002

Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid Cu-DEPENDENT CATALYTIC CONVERSION OF DOPAMINE, CHOLESTEROL, AND BIOLOGICAL REDUCING AGENTS TO NEUROTOXIC H2O2

Carlos Opazo; Xudong Huang; Robert A. Cherny; Robert D. Moir; Alex E. Roher; Anthony R. White; Roberto Cappai; Colin L. Masters; Rudolph E. Tanzi; Nibaldo C. Inestrosa; Ashley I. Bush

β-Amyloid (Aβ) 1–42, implicated in the pathogenesis of Alzheimers disease, forms an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Aβ·Cu complexes generate neurotoxic H2O2 from O2 through Cu2+ reduction, but the reaction mechanism has been unclear. We now report that Aβ1–42, when binding up to 2 eq of Cu2+, generates the H2O2catalytically by recruiting biological reducing agents as substrates under conditions where the Cu2+ or reducing agents will not form H2O2 themselves. Cholesterol is an important substrate for this activity, as are vitamin C,l-DOPA, and dopamine (V maxfor dopamine = 34.5 nm/min, K m = 8.9 μm). The activity was inhibited by anti-Aβ antibodies, Cu2+ chelators, and Zn2+. Toxicity of Aβ in neuronal culture was consistent with catalytic H2O2 production. Aβ was not toxic in cell cultures in the absence of Cu2+, and dopamine (5 μm) markedly exaggerated the neurotoxicity of 200 nm Aβ1–42·Cu. Therefore, microregional catalytic H2O2 production, combined with the exhaustion of reducing agents, may mediate the neurotoxicity of Aβ in Alzheimers disease, and inhibitors of this novel activity may be of therapeutic value.


Cell | 2010

Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease.

James A. Duce; Andrew Tsatsanis; Michael A. Cater; Simon A. James; Elysia Robb; Krutika Wikhe; Su Ling Leong; Keyla Perez; Timothy Johanssen; Mark Greenough; Hyun-Hee Cho; Denise Galatis; Robert D. Moir; Colin L. Masters; Catriona McLean; Rudolph E. Tanzi; Roberto Cappai; Kevin J. Barnham; Giuseppe D. Ciccotosto; Jack T. Rogers; Ashley I. Bush

Alzheimers Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP(-/-) mice are vulnerable to dietary iron exposure, which causes Fe(2+) accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn(2+), which we demonstrate can originate from Zn(2+)-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.


The Journal of Neuroscience | 2005

Copper-Dependent Inhibition of Human Cytochrome c Oxidase by a Dimeric Conformer of Amyloid-β1-42

Peter J. Crouch; Rachel E. Blake; James A. Duce; Giuseppe D. Ciccotosto; Qiao-Xin Li; Kevin J. Barnham; Cyril C. Curtain; Robert A. Cherny; Roberto Cappai; Thomas Dyrks; Colin L. Masters; Ian A. Trounce

In studies of Alzheimers disease pathogenesis there is an increasing focus on mechanisms of intracellular amyloid-β (Aβ) generation and toxicity. Here we investigated the inhibitory potential of the 42 amino acid Aβ peptide (Aβ1-42) on activity of electron transport chain enzyme complexes in human mitochondria. We found that synthetic Aβ1-42 specifically inhibited the terminal complex cytochrome c oxidase (COX) in a dose-dependent manner that was dependent on the presence of Cu2+ and specific “aging” of the Aβ1-42 solution. Maximal COX inhibition occurred when using Aβ1-42 solutions aged for 3-6 h at 30°C. The level of Aβ1-42-mediated COX inhibition increased with aging time up to ∼6 h and then declined progressively with continued aging to 48 h. Photo-induced cross-linking of unmodified proteins followed by SDS-PAGE analysis revealed dimeric Aβ as the only Aβ species to provide significant temporal correlation with the observed COX inhibition. Analysis of brain and liver from an Alzheimers model mouse (Tg2576) revealed abundant Aβ immunoreactivity within the brain mitochondria fraction. Our data indicate that endogenous Aβ is associated with brain mitochondria and that Aβ1-42, possibly in its dimeric conformation, is a potent inhibitor of COX, but only when in the presence of Cu2+. We conclude that Cu2+-dependent Aβ-mediated inhibition of COX may be an important contributor to the neurodegeneration process in Alzheimers disease.


The Journal of Pathology | 2007

Packaging of prions into exosomes is associated with a novel pathway of PrP processing.

Laura J. Vella; Robyn A. Sharples; Victoria A. Lawson; Colin L. Masters; Roberto Cappai; Andrew F. Hill

Prion diseases are fatal, transmissible neurodegenerative disorders associated with conversion of the host‐encoded prion protein (PrPC) into an abnormal pathogenic isoform (PrPSc). Following exposure to the infectious agent (PrPSc) in acquired disease, infection is propagated in lymphoid tissues prior to neuroinvasion and spread within the central nervous system. The mechanism of prion dissemination is perplexing due to the lack of plausible PrPSc‐containing mobile cells that could account for prion spread between infected and uninfected tissues. Evidence exists to demonstrate that the culture media of prion‐infected neuronal cells contain PrPSc and infectivity but the nature of the infectivity remains unknown. In this study we have identified PrPC and PrPSc in association with endogenously expressing PrP neuronal cell‐derived exosomes. The exosomes from our prion‐infected neuronal cell line were efficient initiators of prion propagation in uninfected recipient cells and to non‐neuronal cells. Moreover, our neuronal cell line was susceptible to infection by non‐neuronal cell‐derived exosome PrPSc. Importantly, these exosomes produced prion disease when inoculated into mice. Exosome‐associated PrP is packaged via a novel processing pathway that involves the N‐terminal modification of PrP and selection of distinct PrP glycoforms for incorporation into these vesicles. These data extend our understanding of the relationship between PrP and exosomes by showing that exosomes can establish infection in both neighbouring and distant cell types and highlight the potential contribution of differentially processed forms of PrP in disease distribution. These data suggest that exosomes represent a potent pool of prion infectivity and provide a mechanism for studying prion spread and PrP processing in cells endogenously expressing PrP. Copyright


Nature Medicine | 2012

Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export

Peng Lei; Scott Ayton; David Finkelstein; Loredana Spoerri; Giuseppe D. Ciccotosto; David K. Wright; Bruce X. Wong; Paul A. Adlard; Robert A. Cherny; Linh Q. Lam; Blaine R. Roberts; Irene Volitakis; Gary F. Egan; Catriona McLean; Roberto Cappai; James A. Duce; Ashley I. Bush

The microtubule-associated protein tau has risk alleles for both Alzheimers disease and Parkinsons disease and mutations that cause brain degenerative diseases termed tauopathies. Aggregated tau forms neurofibrillary tangles in these pathologies, but little is certain about the function of tau or its mode of involvement in pathogenesis. Neuronal iron accumulation has been observed pathologically in the cortex in Alzheimers disease, the substantia nigra (SN) in Parkinsons disease and various brain regions in the tauopathies. Here we report that tau-knockout mice develop age-dependent brain atrophy, iron accumulation and SN neuronal loss, with concomitant cognitive deficits and parkinsonism. These changes are prevented by oral treatment with a moderate iron chelator, clioquinol. Amyloid precursor protein (APP) ferroxidase activity couples with surface ferroportin to export iron, but its activity is inhibited in Alzheimers disease, thereby causing neuronal iron accumulation. In primary neuronal culture, we found loss of tau also causes iron retention, by decreasing surface trafficking of APP. Soluble tau levels fall in affected brain regions in Alzheimers disease and tauopathies, and we found a similar decrease of soluble tau in the SN in both Parkinsons disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. These data suggest that the loss of soluble tau could contribute to toxic neuronal iron accumulation in Alzheimers disease, Parkinsons disease and tauopathies, and that it can be rescued pharmacologically.


Brain Research | 1999

Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice.

Anthony R. White; Rosario Reyes; Julian F. B. Mercer; James Camakaris; Hui Zheng; Ashley I. Bush; Gerd Multhaup; Konrad Beyreuther; Colin L. Masters; Roberto Cappai

The pathological process in Alzheimers disease (AD) involves amyloid beta (Abeta) deposition and neuronal cell degeneration. The neurotoxic Abeta peptide is derived from the amyloid precursor protein (APP), a member of a larger gene family including the amyloid precursor-like proteins, APLP1 and APLP2. The APP and APLP2 molecules contain metal binding sites for copper and zinc. The zinc binding domain (ZnBD) is believed to have a structural rather than a catalytic role. The activity of the copper binding domain (CuBD) is unknown, however, APP reduces copper (II) to copper (I) and this activity could promote copper-mediated neurotoxicity. The expression of APP and APLP2 in the brain suggests they could have an important direct or indirect role in neuronal metal homeostasis. To examine this, we measured copper, zinc and iron levels in the cerebral cortex, cerebellum and selected non-neuronal tissues from APP (APP(-/-)) and APLP2 (APLP2(-/-)) knockout mice using atomic absorption spectrophotometry. Compared with matched wild-type (WT) mice, copper levels were significantly elevated in both APP(-/-) and APLP2(-/-) cerebral cortex (40% and 16%, respectively) and liver (80% and 36%, respectively). Copper levels were not significantly different between knockout and WT cerebellum, spleen or serum samples. There were no significant differences observed between APP(-/-), APLP2(-/-) and WT mice zinc or iron levels in any tissue examined. These findings indicate APP and APLP2 expression specifically modulates copper homeostasis in the liver and cerebral cortex, the latter being a region of the brain particularly involved in AD. Perturbations to APP metabolism and in particular, its secretion or release from neurons may alter copper homeostasis resulting in increased Abeta accumulation and free radical generation. These data support a novel mechanism in the APP/Abeta pathway which leads to AD.


Journal of Neurochemistry | 2001

Homocysteine potentiates copper‐ and amyloid beta peptide‐mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer's‐type neurodegenerative pathways

Anthony R. White; Xudong Huang; Michael F. Jobling; Colin J. Barrow; Konrad Beyreuther; Colin L. Masters; Ashley I. Bush; Roberto Cappai

Oxidative stress may have an important role in the progression of neurodegenerative disorders such as Alzheimers disease (AD) and prion diseases. Oxidative damage could result from interactions between highly reactive transition metals such as copper (Cu) and endogenous reducing and/or oxidizing molecules in the brain. One such molecule, homocysteine, a thiol‐containing amino acid, has previously been shown to modulate Cu toxicity in HeLa and endothelial cells in vitro. Due to a possible link between hyperhomocysteinemia and AD, we examined whether interaction between homocysteine and Cu could potentiate Cu neurotoxicity. Primary mouse neuronal cultures were treated with homocysteine and either Cu (II), Fe (II or III) or Zn (II). Homocysteine was shown to selectively potentiate toxicity from low micromolar concentrations of Cu. The toxicity of homocysteine/Cu coincubation was dependent on the ability of homocysteine to reduce Cu (II) as reflected by the inhibition of toxicity with the Cu (I)‐specific chelator, bathocuproine disulphonate. This was supported by data showing that homocysteine reduced Cu (II) more effectively than cysteine or methionine but did not reduce Fe (III) to Fe (II). Homocysteine also generated high levels of hydrogen peroxide in the presence of Cu (II) and promoted Aβ/Cu‐mediated hydrogen peroxide production and neurotoxicity. The potentiation of metal toxicity did not involve excitotoxicity as ionotropic glutamate receptor antagonists had no effect on neurotoxicity. Homocysteine alone also had no effect on neuronal glutathione levels. These studies suggest that increased copper and/or homocysteine levels in the elderly could promote significant oxidant damage to neurons and may represent additional risk factor pathways which conspire to produce AD or related neurodegenerative conditions.


The FASEB Journal | 2004

Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease β-amyloid

Kevin J. Barnham; Fredrik Haeffner; Giuseppe D. Ciccotosto; Cyril C. Curtain; Deborah J. Tew; Christine Mavros; Konrad Beyreuther; Darryl Carrington; Colin L. Masters; Robert A. Cherny; Roberto Cappai; Ashley I. Bush

Alzheimers disease (AD) is characterized by the presence of neurofibrillary tangles and amyloid plaques, which are abnormal protein deposits. The major constituent of the plaques is the neurotoxic β‐amyloid peptide (Aβ); the genetics of familial AD support a direct role for this peptide in AD. Aβ neurotoxicity is linked to hydrogen peroxide formation. Aβ coordinates the redox active transition metals, copper and iron, to catalytically generate reactive oxygen species. The chemical mechanism underlying this process is not well defined. With the use of density functional theory calculations to delineate the chemical mechanisms that drive the catalytic production of H2O2 by Aβ/Cu, tyrosine10 (Y10) was identified as a pivotal residue for this reaction to proceed. The relative stability of tyrosyl radicals facilitates the electron transfers that are required to drive the reaction. Confirming the theoretical results, mutation of the tyrosine residue to alanine inhibited H2O2 production, Cu‐induced radicalization, dityrosine cross‐linking, and neurotoxicity.


Brain | 2011

18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease

Michelle Fodero-Tavoletti; Nobuyuki Okamura; Shozo Furumoto; Rachel S. Mulligan; Andrea R. Connor; Catriona McLean; Diana Cao; Angela Rigopoulos; Glenn A Cartwright; Graeme O'Keefe; Sylvia Gong; Paul A. Adlard; Kevin J. Barnham; Christopher C. Rowe; Colin L. Masters; Yukitsuka Kudo; Roberto Cappai; Kazuhiko Yanai; Victor L. Villemagne

While considerable effort has focused on developing positron emission tomography β-amyloid imaging radiotracers for the early diagnosis of Alzheimers disease, no radiotracer is available for the non-invasive quantification of tau. In this study, we detail the characterization of (18)F-THK523 as a novel tau imaging radiotracer. In vitro binding studies demonstrated that (18)F-THK523 binds with higher affinity to a greater number of binding sites on recombinant tau (K18Δ280K) compared with β-amyloid(1-42) fibrils. Autoradiographic and histofluorescence analysis of human hippocampal serial sections with Alzheimers disease exhibited positive THK523 binding that co-localized with immunoreactive tau pathology, but failed to highlight β-amyloid plaques. Micro-positron emission tomography analysis demonstrated significantly higher retention of (18)F-THK523 (48%; P < 0.007) in tau transgenic mice brains compared with their wild-type littermates or APP/PS1 mice. The preclinical examination of THK523 has demonstrated its high affinity and selectivity for tau pathology both in vitro and in vivo, indicating that (18)F-THK523 fulfils ligand criteria for human imaging trials.

Collaboration


Dive into the Roberto Cappai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley I. Bush

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Anthony R. White

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert A. Cherny

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge